Skip to main content

A primal truncated newton algorithm with application to large-scale nonlinear network optimization

  • Chapter
  • First Online:
Computation Mathematical Programming

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 31))

Abstract

We describe a new, convergent, primal-feasible algorithm for linearly constrained optimization. It is capable of rapid asymptotic behavior and has relatively low storage requirements. Its application to large-scale nonlinear network optimization is discussed and computational results on problems of over 2000 variables and 1000 constraints are presented. Indications are that it could prove to be significantly better than known methods for this class of problems.

This was research supported in part by DOT Grant CT-06-0011 and by NSF Grant ECS-8119513.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Aashtiani, and T. Magnanti, “Equilibria on a congested transportation network,” SIAM Journal on Algebraic and Discrete Methods 2 (1981) 213–226.

    Article  MATH  MathSciNet  Google Scholar 

  2. D.P. Ahlfeld, R.S. Dembo, J.M. Mulvey and S.A. Zenios, “Nonlinear programming on generalized networks,” Engineering-Economic Series Report EES-85-7, Princeton University (Princeton, NJ, 1985).

    Google Scholar 

  3. R.S. Barr, and J.S. Turner, “Microdata file merging through large-scale network technology,” Mathematical Programming Study 15 (1981) 1–22.

    MATH  Google Scholar 

  4. K. Belling-Seib, “Mathematische Programmierungsprobleme mit Netzwerkstruktur,” Ph.D. Thesis, Free University of Berlin (Berlin, 1983).

    Google Scholar 

  5. D.P. Bertsekas, “On the Goldstein-Levitin-Polyak gradient projection method,” IEEE Transactions on Automatic Control 21 (1976) 174–184.

    Article  MATH  MathSciNet  Google Scholar 

  6. D.P. Bertsekas, “Projected Newton methods for optimization problems with simple constraints,” SIAM Journal of Control and Optimization 20 (1980) 221–246.

    Article  MathSciNet  Google Scholar 

  7. R.G. Bland, “New finite pivoting rules for the simplex method,” Mathematics of Operations Research 2 (1977) 103–107.

    Article  MATH  MathSciNet  Google Scholar 

  8. G.H. Bradley, G.G. Brown and G.W. Graves, “Design and implementation of large-scale primal transshipment algorithms,” Management Science 24 (1977) 1–34.

    Article  MATH  Google Scholar 

  9. T.F. Coleman and J.J. More’, “Estimation of sparse Hessian matrices and graph coloring problems,” Research Report ANL/MCS-TM-4, Argonne National Laboratory (Argonne, IL. 1959).

    Google Scholar 

  10. M. Collins, L. Cooper, R.V. Helgason, J.L. Kennington and L.J. LeBlanc, “Solving the pipe network analysis problem using optimization techniques,” Management Science 24 (1978) 747–760.

    Article  MATH  MathSciNet  Google Scholar 

  11. L. Cooper and J. Kennington, “Steady-state analysis of nonlinear resistive networks using optimization techniques”, Technical Report IEOR 77012, Southern Methodist University (Dallas, TX, 1977).

    Google Scholar 

  12. R.S. Dembo and J.G. Klincewicz, “A scaled reduced gradient algorithm for network flow problems with convex separable costs,” Mathematical Programming Study 15 (1981) 125–147.

    MATH  MathSciNet  Google Scholar 

  13. R.S. Dembo, S.C. Eisenstat and T. Steihaug, “Inexact Newton methods,” SIAM Journal of Numerical Analysis 19 (1982) 400–409.

    Article  MATH  MathSciNet  Google Scholar 

  14. R.S. Dembo and T. Steihaug, “Truncated-Newton algorithms for large-scale unconstrained optimization,” Mathematical Programming 26 (1983) 190–212.

    Article  MATH  MathSciNet  Google Scholar 

  15. R.S. Dembo and J.G. Klincewicz, “Dealing with degeneracy in reduced gradient algorithms,” Mathematical Programming 31 (1985) 357–363.

    Article  MATH  MathSciNet  Google Scholar 

  16. R.S. Dembo “NLPNET—User’s guide and system documentation,” School of Organization and Management Working Paper Series B #70, Yale University, (New Haven, CT, 1983).

    Google Scholar 

  17. R.S. Dembo, “A bending, backtracking linesearch for linearly-constrained optimization,” School of Organization and Management Working Paper Series B, #74, May 1984.

    Google Scholar 

  18. R.S. Dembo and Sahi, “A convergent active-set strategy for linearly-constrained optimization,” School of Organization and Management Working Paper Series B, #80 (1984), to appear in SIAM Journal on Numerical Analysis.

    Google Scholar 

  19. R.S. Dembo and U. Tulowitzki, “On the minimization of quadratic functions subject to box constraints,” School of Organization and Management Working Paper Series B#71, Yale University, 1983, to appear in SIAM J. on Scientific and Statistical Computing.

    Google Scholar 

  20. A. Drud, “CONOPT—A GRG code for large sparse dynamic nonlinear optimization problems,” Mathematical Programming 31 (1985) 153–191.

    Article  MATH  MathSciNet  Google Scholar 

  21. L.F. Escudero, “On diagonally-preconditioning the truncated Newton method for super-scale linearly constrained nonlinear programming,” European Journal of Operational Research 17 (1984) 401–414.

    Article  MATH  MathSciNet  Google Scholar 

  22. L.F., Escudero, “A motivation for using the truncated Newton approach in a very large-scale nonlinear network problem,” Mathematical Programming Studies (in press).

    Google Scholar 

  23. Eriksson, “A note on the solution of large sparse maximum entropy problems with linear equality constraints,” Mathematical Programming 18 (1980) 146–154.

    Article  MATH  MathSciNet  Google Scholar 

  24. R. Fletcher, Practical methods of optimization, Volumes I and II (John Wiley and Sons, New York 1981, 1982).

    Google Scholar 

  25. M. Florian and S. Nguyen, “An application and validation of equilibrium trip assignment methods,” Transportation Science 10 (1976) 374–389.

    Article  Google Scholar 

  26. P.E. Gill, and W. Murray, Numerical methods in constrained optimization (Academic Press, New York, 1974).

    Google Scholar 

  27. P.E. Gill and W. Murray, “The computation of Lagrange multiplier estimates for constrained mimization,” Report NAC 77, National Physical Laboratory, England.

    Google Scholar 

  28. C.R. Glassey, “A quadratic network optimization model for equilibrium single-commodity trade flows,” Mathematical Programming 14 (1978) 98–107.

    Article  MATH  MathSciNet  Google Scholar 

  29. M. Hanscom, L. Lafond, L.S. Lasdon and G. Pronovost, “Modeling and resolution of the deterministic mid-term energy production problem for the hydro-Quebec system,” Management Science 26 (1980) 659–668.

    Article  Google Scholar 

  30. S.L.S. Jacoby and J.S. Kowalik, Mathematical modeling with computers (Prentice Hall, New York, 1980).

    Google Scholar 

  31. J.L. Kennington and R.V. Helgason, Algorithms for network programming (John Wiley and Sons, New York, 1980).

    MATH  Google Scholar 

  32. L.S. Lasdon, A.D. Waren, A. Jain and M.W. Ratner, “Design and testing of a generalized reduced gradient code for nonlinear programming,” ACM Transactions on Mathematical Software 4 (1978) 34–50.

    Article  MATH  Google Scholar 

  33. G.P. McCormick, “The variable reduction method for nonlinear programming,” Management Science 17 (1970) 146–160.

    Article  MATH  MathSciNet  Google Scholar 

  34. R.R. Meyer, “Two segment separable programming,” Management Science 25 (1979) 385–396.

    Article  MATH  MathSciNet  Google Scholar 

  35. B. Murtagh and M. Saunders, “Large-scale linearly constrained optimization,” Mathematical Programming 14 (1978) 41–72.

    Article  MATH  MathSciNet  Google Scholar 

  36. S.G. Nash, “Truncated Newton methods for nonlinear programming,” in: P. Boggs, R. Byrd, and B. Schnabel, eds., Numerical Optimization 1984, Society of Industrial and Applied Mathematics, Philadelphia 1985.

    Google Scholar 

  37. S.G. Nash, “Avoiding modified matrix factorizations in Newton-like methods,” Paper #84-01, Mathematical Sciences, John Hopkins University, Baltimore, MD, 1984.

    Google Scholar 

  38. G. Pyatt, A.R. Roe, R.M. Lindley and J.I. Round, Social accounting for development and planning (Cambridge University Press 1977).

    Google Scholar 

  39. R.E. Rosenthal, “A nonlinear network flow algorithm for maximizing the benefits in a hydroelectric power system,” Operations Research 29 (1981) 763–786.

    Article  MATH  MathSciNet  Google Scholar 

  40. P. Samuelson, “Spatial price equilibrium and linear programming,” american Economic Review 42 (1952) 283–303.

    Google Scholar 

  41. K. Schittkowski, Nonlinear programming codes-information, tests, performance from the series Lecture notes in economics and mathematical systems, No. 183, (Springer-Verlag, Berlin 1980).

    Google Scholar 

  42. G. Zoutendijk, “Nonlinear programming: A numerical survey,” SIAM Journal on Control 1 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. L. Hoffman R. H. F. Jackson J. Telgen

Rights and permissions

Reprints and permissions

Copyright information

© 1987 The Mathematical Programming Society, Inc.

About this chapter

Cite this chapter

Dembo, R.S. (1987). A primal truncated newton algorithm with application to large-scale nonlinear network optimization. In: Hoffman, K.L., Jackson, R.H.F., Telgen, J. (eds) Computation Mathematical Programming. Mathematical Programming Studies, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0121178

Download citation

  • DOI: https://doi.org/10.1007/BFb0121178

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00932-7

  • Online ISBN: 978-3-642-00933-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics