Skip to main content

The elastic filament system in myogenesis

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 138))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Squire JM (1997) Architecture and function in the muscle sarcomere. Curr Opin Struct Biol 7:247–257

    Article  PubMed  CAS  Google Scholar 

  2. Maruyama K, Kimura S, Ohasi K, Kuwano Y (1996) Connectin, an elastic protein in muscle. Identification of “titin” with connectin. J Biochem 89:701–719

    Google Scholar 

  3. Trinick J (1996) Titin as a scaffold and spring. Curr Biol 6:258–260

    Article  PubMed  CAS  Google Scholar 

  4. Wang K (1996) Titin/connectin and nebulin: giant protein rulers of muscle structure and function. Adv Biophys 33:123–134

    Article  PubMed  CAS  Google Scholar 

  5. Tokuyasu KT, Maher PA (1987) Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. II. Generation of alpha-actinin dots within titin spots at the time of the first myofibril formation. J Cell Biol 105:2795–2801

    Article  PubMed  CAS  Google Scholar 

  6. Tokuyasu KT, Maher PA (1987) Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. I. Presence of immunofluorescent titin spots in premyofibril stages. J Cell Biol 105:2781–2793

    Article  PubMed  CAS  Google Scholar 

  7. Schaart G, Viebahn C, Langmann W, Ramaekers F (1989) Desmin and titin expression in early postimplantation mouse embryos. Dev 107:585–596

    CAS  Google Scholar 

  8. Lin ZX, Eshleman J, Grund C, Fischman DA, Masaki T, Franke WW, et al. (1989) Differential response of myofibrillar and cytoskeletal proteins in cells treated with phorbol myristate acetate. J Cell Biol 108:1079–1091

    Article  PubMed  CAS  Google Scholar 

  9. van der Loop FT, Schaart G, Langmann W, Ramaekers FC, Viebahn C (1992) Expression and organization of muscle specific proteins during the early developmental stages of the rabbit heart. Anatomy & Embryology 185:439–450

    Google Scholar 

  10. Shimada Y, Komiyama M, Begum S, Maruyama K (1996) Development of connectin/titin and nebulin in striated muscles of chicken. Adv Biophys 33:223–233

    Article  PubMed  CAS  Google Scholar 

  11. Furst DO, Osborn M, Weber K (1989) Myogenesis in the mouse embryo: differential onset of expression of myogenic proteins and the involvement of titin in myofibril assembly. J Cell Biol 109:517–527

    Article  PubMed  CAS  Google Scholar 

  12. Wang SM, Greaser ML, Schultz E, Bulinski JC, Lin JJ, Lessard JL (1988) Studies on cardiac myofibrillogenesis with antibodies to titin, actin, tropomyosin, and myosin. J Cell Biol 107:1075–1083

    Article  PubMed  CAS  Google Scholar 

  13. Handel SE, Greaser ML, Schultz E, Wang SM, Bulinski JC, Lin JJ, et al. (1991) Chicken cardiac myofibrillogenesis studied with antibodies specific for titin and the muscle and nonmuscle isoforms of actin and tropomyosin. Cell & Tiss Res 263:419–430

    Article  CAS  Google Scholar 

  14. Terai M, Komiyama M, Shimada Y (1989) Myofibril assembly is linked with vinculin, alpha-actinin, and cell-substrate contacts in embryonic cardiac myocytes in vitro. Cell Motil & Cytoskel 12:185–194

    Article  CAS  Google Scholar 

  15. Schultheiss T, Lin ZX, Lu MH, Murray J, Fischman DA, Weber K, et al. (1990) Differential distribution of subsets of myofibrillar proteins in cardiac nonstriated and striated myofibrils. J Cell Biol 110:1159–1172

    Article  PubMed  CAS  Google Scholar 

  16. Komiyama M, Maruyama K, Shimada Y (1990) Assembly of connectin (titin) in relation to myosin and alpha-actinin in cultured cardiac myocytes. J Mus Res & Cell Motil 11:419–428

    Article  CAS  Google Scholar 

  17. Rhee D, Sanger JM, Sanger JW (1994) The premyofibril: evidence for its role in myofibrillogenesis. Cell Motil Cytoskel 28:1–24

    Article  CAS  Google Scholar 

  18. Komiyama M, Kouchi K, Maruyama K, Shimada Y (1993) Dynamics of actin and assembly of connectin (titin) during myofibrillogenesis in embryonic chick cardiac muscle cells in vitro. Dev Dyn 196:291–299

    PubMed  CAS  Google Scholar 

  19. van der Loop FT, van Eys GJ, Schaart G, Ramaekers FC (1996) Titin expression as an early indication of heart and skeletal muscle differentiation in vitro. Developmental re-organisation in relation to cytoskeletal constituents. J Mus Res Cell Motil 17:23–36

    Article  Google Scholar 

  20. Colley NJ, Tokuyasu KT, Singer SJ (1990) The early expression of myofibrillar proteins in round postmitotic myoblasts of embryonic skeletal muscle. J Cell Sci 95:11–22

    PubMed  CAS  Google Scholar 

  21. Turnacioglu KK, Mittal B, Sanger JM, Sanger JW (1996) Partial characterization of zeugmatin indicates that it is part of the Z-band region of titin. Cell Motil Cytoskel 34:108–121

    Article  CAS  Google Scholar 

  22. Isaacs WB, Kim IS, Struve A, Fulton AB (1989) Biosynthesis of titin in cultured skeletal muscle cells. J Cell Biol 109:2189–2195

    Article  PubMed  CAS  Google Scholar 

  23. Hill CS, Duran S, Lin ZX, Weber K, Holtzer H (1986) Titin and myosin, but not desmin, are linked during myofibrillogenesis in postmitotic mononucleated myoblasts. J Cell Biol 103:2185–2196

    Article  PubMed  CAS  Google Scholar 

  24. van der Loop FT, van der Ven PF, Furst DO, Gautel M, van Eys GJ, Ramaekers FC (1996) Integration of titin into the sarcomeres of cultured differentiating human skeletal muscle cells. Eur J Cell Biol 69:301–307

    PubMed  Google Scholar 

  25. Fulton AB, Alftine C (1997) Organization of protein and mRNA for titin and other myofibril components during myofibrillogenesis in cultured chicken skeletal muscle. Cell Struc & Func 22:51–58

    CAS  Google Scholar 

  26. Fulton AB (1993) Spatial organization of the synthesis of cytoskeletal proteins. J Cell Biochem 52:148–152

    Article  PubMed  CAS  Google Scholar 

  27. Fulton AB, Alftine C (1997) Organization of protein and mRNA for titin and other myofibril components during myofibrillogenesis in cultured chicken skeletal muscle. Cell Struc & Funct

    Google Scholar 

  28. Cripe L, Morris E, Fulton AB (1993) Vimentin mRNA location changes during muscle development. Proc Natl Acad Sci USA 90:2724–2728

    Article  PubMed  CAS  Google Scholar 

  29. Morris EJ, Fulton AB (1994) Rearrangement of mRNAs for costamere proteins during costamere development in cultured skeletal muscle from chicken. J Cell Sci 107:377–386

    PubMed  CAS  Google Scholar 

  30. Taneja KL, Singer RH (1990) Detection and localization of actin mRNA isoforms in chicken muscle cells by in situ hybridization using biotinated oligonucleotide probes. J Cell Biochem 44:241–252

    Article  PubMed  CAS  Google Scholar 

  31. Dix DJ, Eisenberg BR (1990) Myosin mRNA accumulation and myofibrillogenesis at the myotendinous junction of stretched muscle fibers. J Cell Biol 111:1885–1894

    Article  PubMed  CAS  Google Scholar 

  32. Russell B, Dix DJ (1992) Mechanisms for intracellular distribution of mRNA: in situ hybridization studies in muscle. [Review] [69 refs]. Am J Physiol 262:C1–C8

    PubMed  CAS  Google Scholar 

  33. Isaacs WB, Kim IS, Struve A, Fulton AB (1992) Association of titin and myosin heavy chain in developing skeletal muscle. Proc Natl Acad Sci USA 89:7496–7500

    Article  PubMed  CAS  Google Scholar 

  34. Isaacs WB, Fulton AB (1987) Cotranslational assembly of myosin heavy chain in developing cultured skeletal muscle. Proc Natl Acad Sci USA 84:6174–6178

    Article  PubMed  CAS  Google Scholar 

  35. Lu MH, Dilullo C, Schultheiss T, Holtzer S, Murray JM, Choi J, et al. (1992) The vinculin/sarcomeric-alpha-actinin/alpha-actin nexus in cultured cardiac myocytes. J Cell Biol 117:1007–1022

    Article  PubMed  CAS  Google Scholar 

  36. Forry-Schaudies S, Murray JM, Toyama Y, Holtzer H (1986) Effects of colcemid and taxol on microtubules and intermediate filaments in chick embryo fibroblasts. Cell Motil Cytoskel 6:324–338

    Article  CAS  Google Scholar 

  37. Denning G, Fulton AB (1986) A simple trypsin resistance assay for muscle and other cell fusion. J Histochem Cytochemi 34:959–962

    CAS  Google Scholar 

  38. Holtzer H, Forry-Schaudies S, Dlugosz A, Antin P, Dubyak G (1985) Interactions between IFs, microtubules, and myofibrils in fibrogenic and myogenic cells. Ann NY Acad Sci 455:106–125

    Article  PubMed  CAS  Google Scholar 

  39. Lin Z, Lu MH, Schultheiss T, Choi J, Holtzer S, Dilullo C, et al. (1994) Sequential appearance of muscle-specific proteins in myoblasts as a function of time after cell division: evidence for a conserved myoblast differentiation program in skeletal muscle. Cell Motil Cytoskel 29:1–19

    Article  CAS  Google Scholar 

  40. Lowrey AA, Kaufman SJ (1989) Membrane-cytoskeleton associations during myogenesis deviate from traditional definitions. Exp Cell Res 183:1–23

    Article  PubMed  CAS  Google Scholar 

  41. De Petris S (1974) Inhibition and reversal of capping by cytochalasin B, vinblastine and colchicine. Nature 250:54–56

    Article  PubMed  Google Scholar 

  42. Cheung HT, Cantarow WD, Sundharadas G (1978) Colchicine and cytochalasin B (CB) effects on random movement, spreading and adhesion of mouse macrophages. Exp Cell Res 111:95–103

    Article  PubMed  CAS  Google Scholar 

  43. Solomon F, Magendantz M (1981) Cytochalasin separates microtubule disassembly from loss of asymmetric morphology. J Cell Biol 89:157–161

    Article  PubMed  CAS  Google Scholar 

  44. Gard DL, Cha BJ, King E (1997) The organization and animal-vegetal asymmetry of cytokeratin filaments in stage VI Xenopus oocytes is dependent upon Factin and microtubules. Dev Biol 184:95–114

    Article  PubMed  CAS  Google Scholar 

  45. van Deurs B, von Bulow F, Vilhardt F, Holm PK, Sandvig K (1996) Destabilization of plasma membrane structure by prevention of actin polymerization. Microtubule-dependent tubulation of the plasma membrane. J Cell Sci 109:1655–1665

    PubMed  Google Scholar 

  46. Ingber DE, Prusty D, Sun Z, Betensky H, Wang N (1995) Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis. J Biomech 28:1471–1484

    Article  PubMed  CAS  Google Scholar 

  47. Roy SG (1993) Role of stress fibers in the association of intermediate filaments with microtubules in fibroblast cells. Cell Biol Int 17:645–652

    Article  PubMed  CAS  Google Scholar 

  48. Croop J, Holtzer H (1975) Response of myogenic and fibrogenic cells to cytochalasin B and to colcemid. I. Light microscope observations. J Cell Biol 65:271–285

    Article  PubMed  CAS  Google Scholar 

  49. Holtzer H, Croop J, Dienstman S, Ishikawa H, Somlyo AP (1975) Effects of cytochaslasin B and colcemide on myogenic cultures. Proc Natl Acad Sci USA 72:513–517

    Article  PubMed  CAS  Google Scholar 

  50. Puri EC, Chiquet M, Turner DC (1979) Fibronectin-independent myoblast fusion in suspension cultures. Biochem Biophys Res Commun 90:883–889

    Article  PubMed  CAS  Google Scholar 

  51. Fischman DA (1970) The synthesis and assembly of myofibrils in embryonic muscle. Curr Top Dev Biol 5:235–280

    Article  PubMed  CAS  Google Scholar 

  52. Shimada Y, Obinata T (1977) Polarity of actin filaments at the initial stage of myofibril assembly in myogenic cells in vitro. J Cell Biol 72:777–785

    Article  PubMed  CAS  Google Scholar 

  53. Turnacioglu KK, Mittal B, Dabiri GA, Sanger JM, Sanger JW (1997) Zeugmatin is part of the Z-band targeting region of titin. Cell Struct Funct 22:73–82

    Article  PubMed  CAS  Google Scholar 

  54. Schafer DA, Hug C, Cooper JA (1995) Inhibition of CapZ during myofibrillogenesis alters assembly of actin filaments. J Cell Biol 128:61–70

    Article  PubMed  CAS  Google Scholar 

  55. Roest PA, van der Tuijn AC, Ginjaar HB, Hoeben RC, Hoger-Vorst FB, Bakker E, et al. (1996) Application of in vitro Myo-differentiation of non-muscle cells to enhance gene expression and facilitate analysis of muscle proteins. Neuromuscul Disord 6:195–202

    Article  PubMed  CAS  Google Scholar 

  56. Choi J, Costa ML, Mermelstein CS, Chagas C, Holtzer S, Holtzer H (1990) MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells into striated mononucleated myoblasts and multinucleated myotubes. Proc Natl Acad Sci USA 87:7988–7992

    Article  PubMed  CAS  Google Scholar 

  57. Obermann WM, Gautel M, Weber K, Furst DO (1997) Molecular structure of the sarcomeric M band: mapping of titin and myosin binding domains in myomesin and the identification of a potential regulatory phosphorylation site in myomesin. EMBO J 16:211–220

    Article  PubMed  CAS  Google Scholar 

  58. Gautel M, Leonard K, Labeit S (1993) Phosphorylation of KSP motifs in the Cterminal region of titin in differentiating myoblasts. EMBO J 12:3827–3834

    PubMed  CAS  Google Scholar 

  59. Ingber DE (1993) Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Sci 104:613–627

    PubMed  Google Scholar 

  60. Ingber DE, Dike L, Hansen L, Karp S, Liley H, Maniotis A, et al. (1994) Cellular tensegrity: exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis. Int Rev Cytol 150:173–224

    Article  PubMed  CAS  Google Scholar 

  61. Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 59:575–599

    Article  PubMed  CAS  Google Scholar 

  62. Pickett-Heaps JD, Forer A, Spurck T (1997) Traction fibre: toward a “tensegral” model of the spindle. Cell Motil Cytoskeleton 37:1–6

    Article  PubMed  CAS  Google Scholar 

  63. Stamenovic D, Fredberg JJ, Wang N, Butler JP, Ingber DE (1996) A microstructural approach to cytoskeletal mechanics based on tensegrity. J Theor Biol 181:125–136

    Article  PubMed  CAS  Google Scholar 

  64. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127

    Article  PubMed  CAS  Google Scholar 

  65. Bennett PM, Gautel M (1996) Titin domain patterns correlate with the axial disposition of myosin at the end of the thick filament. J Mol Biol 259:896–903

    Article  PubMed  CAS  Google Scholar 

  66. Kolmerer B, Olivieri N, Witt CC, Herrmann BG, Labeit S (1996) Genomic organization of M line titin and its tissue-specific expression in two distinct isoforms. J Mol Biol 256:556–563

    Article  PubMed  CAS  Google Scholar 

  67. Schiaffino S, Reggiani C (1996) Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev 76:371–423

    PubMed  CAS  Google Scholar 

  68. Dlugosz AA, Antin PB, Nachmias VT, Holtzer H (1984) The relationship between stress fiber-like structures and nascent myofibrils in cultured cardiac myocytes. J Cell Biol 99:2268–2278

    Article  PubMed  CAS  Google Scholar 

  69. Helmes M, Trombitas K, Granzier H (1996) Titin develops restoring force in rat cardiac myocytes. Circ Res 79:619–626

    PubMed  CAS  Google Scholar 

  70. McDonald KA, Lakonishok M, Horwitz AF (1995) Alpha v and alpha 3 integrin subunits are associated with myofibrils during myofibrillogenesis. J Cell Sci 108:2573–2581

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this chapter

Cite this chapter

Fulton, A.B. (1999). The elastic filament system in myogenesis. In: Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0119626

Download citation

  • DOI: https://doi.org/10.1007/BFb0119626

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65484-1

  • Online ISBN: 978-3-540-49231-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics