Skip to main content

Control of sarcomeric assembly: The flow of information on titin

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 138))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arber S, Hunter J, Ross J, Hongo M, Sansig G, Borg J, Perriard J-C, Chien K and Caroni P (1997). MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88:393–403

    PubMed  CAS  Google Scholar 

  • Ayme-Southgate A, Southgate R, Saide J, Benian GM and Pardue ML (1995). Both synchronous and asynchronous muscle isoforms of projectin (the Drosophila bent locus product) contain functional kinase domains. J Cell Biol 128:393–403

    PubMed  CAS  Google Scholar 

  • Bantle S, Keller S, Haussmann I, Auerbach D, Perriard E, Mühlebach S and Perriard J-C (1996). Tissue-specific isoforms of chicken myomesin are generated by alternative splicing. J Biol Chem 271:19042–19052

    PubMed  CAS  Google Scholar 

  • Benian GM, Kiff JE, Neckelmann N, Moerman DG and Waterston RH (1989). Sequence of an unusually large protein implicated in the regulation of myosin activity in C. elegans. Nature 342:45–50

    PubMed  CAS  Google Scholar 

  • Bennett PM and Gautel M (1996). Titin domain patterns correlate with the axial disposition of myosin at the end of the thick filament. J Mol Biol 259:896–903

    PubMed  CAS  Google Scholar 

  • Bennett PM, Hodkin TE and Hawkins C (1997). Evidence that the tandem Ig domains near the End of the muscle thick filament form an inelastic part of the Iband titin. J Struct Biol 120:93–104

    PubMed  CAS  Google Scholar 

  • Bennett P, Craig R, Starr R and Offer G (1986). The ultrastuctural localization of C-protein, X-protein and H-protein in rabbit muscle. J Muscle Res Cell Motil 7:550–567

    PubMed  CAS  Google Scholar 

  • Blanchard A, Ohanian V and Critchley D (1989). The structure and function of alpha-actinin. J Muscle Res Cell Motil 10:280–289

    PubMed  CAS  Google Scholar 

  • Bonne G, Carrier L, Bercovici J, Cruaud C, Richard P, Hainque B, Gautel M, Labeit S, James M, Weissenbach J, Vosberg H-P, Fiszman M, Komajda M and Schwartz K (1995). Cardiac myosin binding protein-C gene splice aceptor site mutation is associated with familial hypertrophic cardiomyopathy. Nature Genetics 11:438–440

    PubMed  CAS  Google Scholar 

  • Bossemeyer D, Engh RA, Kinzel V, Ponstingl H and Huber H (1993). Phosphotransferase and substrate binding mechanism of the cAMP-dependent protein kinase catalytic subunit from porcine heart as deduced from the 2.0 Å structure of the complex with Mn2+ adenylyl imidodiphosphate and inhibitor peptide PKI(5-24). EMBO J 12:849–859

    PubMed  CAS  Google Scholar 

  • Cano E and Mahadevan LC (1995). Parallel signal processing among mammalian MAPKs. TIBS 20:117–122

    PubMed  CAS  Google Scholar 

  • Carrier L, Bonne G, Bährend E, Yu B, Richard P, Niel F, Hainque B, Cruaud C, Gary F, Labeit S, Bouhour J-B, Dubourg O, Desnors M, Hagege AA, Trent RJ, Konajda M, Fiszman M and Schwartz K (1997). Organization sequence of human cardiac myosin binding protein C gene (MYBPC3) Identification of mutations predicted to produce truncated proteins in familial hypertrophic cardiomyopathy. Circulation Res 80:427–434

    PubMed  CAS  Google Scholar 

  • Castellani L, Reedy MC, Gauzzi MC, Provenzano C, Alema S and Falcone G (1995). Maintenance of the differentiated state in skeletal muscle: activation of v-Src disrupts sarcomeres in quail myotubes. J Cell Biol 130:871–885

    PubMed  CAS  Google Scholar 

  • Castellani L, Reedy M, Airey JA, Gallo R, Ciotti MT, Falcone G and Alema S (1996). Remodeling of cytoskeleton and triads following activation of v-Src tyrosine kinase in quail myotubes. J Cell Sci 109:1335–1346

    PubMed  CAS  Google Scholar 

  • Chen M-J G, Shih C-L and Wang K (1993). Nebulin as an actin zipper. J Biol Chem 268:20327–20334

    PubMed  CAS  Google Scholar 

  • Chien KR, Knowlton KU, Zhu H and Chien S (1991). Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J 5:3037–3046

    PubMed  CAS  Google Scholar 

  • Choi JK, Holtzer S, Chacko SA, Lin ZX, Huffman RK and Holtzer H (1991). Phorbol esters selectively and reversibly inhibit a subset of myofibrillar genes responsible for the ongoing differentiation program of chick skeletal myotubes. Mol Cell Biol 11:4473–4482

    PubMed  CAS  Google Scholar 

  • Coso OA, Chiariello M, C. Y. J., Teramoto H, Crespo P, Xu N, Miki T and Gutkind J S (1995). The small GTP-binding proteins Racl and cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81:1137–1146

    PubMed  CAS  Google Scholar 

  • Cowley S, Paterson H, Kemp B and Marshall C (1994). Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77: 841–852

    PubMed  CAS  Google Scholar 

  • Craig R and Offer G (1976a). Axial arrangement of crossbridges in thick filaments of vertebrate skeletal muscle. J Mol Biol 102:325–332

    PubMed  CAS  Google Scholar 

  • Craig R and Offer G (1976b). The localization of C-protein in rabbit skeletal muscle. Proc R Soc Lond B 192:451–461

    Google Scholar 

  • Craig R (1977). Structure of A-segments from frog and rabbit skeletal muscle. J Mol Biol 109:69–81

    PubMed  CAS  Google Scholar 

  • Croop J, Dubyak G, Toyama Y, Dlugosz A, Scarpa A and Holtzer H (1982) Effects of 12-O-tetradecanoyl-phorbol-13-acetate on myofibril integrity and Ca2+ content in developing myotubes. Developmental Biology 89:460–474

    PubMed  CAS  Google Scholar 

  • Dabiri GA, Turnacioglou KK, Sanger JM and Sanger JW (1997). Myofibrillogenesis visualized in living embryonic cardiomyocytes. Proc Natl Acad Sci USA 94:9493–9498

    PubMed  CAS  Google Scholar 

  • Dennis JE, Shimzu T, Reinach FC and Fischman DA (1984). Localization of C-protein isoforms in chicken skeletal muscle: ultrastructural detection using monoclonal antibodies. J Cell Biol 98:1514–1522

    PubMed  CAS  Google Scholar 

  • Dlugosz AA, Tapscott SJ and Holtzer H (1983). Effects of phorbol 12-myristate 13-acetate on the determination program of chick skeletal myoblasts. Cancer Res 43:2780–2789

    PubMed  CAS  Google Scholar 

  • Dlugosz AA, Antin PB, Nachmias VT and Holtzer H (1984). The relationship between stress fiber-like structures and nascent myofibrils in cultured cardiac myocytes. J Cell Biol 99:2268–2278

    PubMed  CAS  Google Scholar 

  • Donath MY, Zapf J, Eppenberger-Eberhardt M, Froesch ER and Eppenberger HM (1994). Insulin-Like Growth Factor I Stimulates Myofibril Development and Decreases Smooth Muscle alpha-Actin of Adult Cardiomyocytes. Proc Natl Acad Sci USA 91:1686–1690

    PubMed  CAS  Google Scholar 

  • Drubin DG, Mulholland J, Zhu ZM and Botstein D (1990). Homology of a yeast actin-binding protein to signal transduction proteins and myosin-I. Nature 343:288–290

    PubMed  CAS  Google Scholar 

  • Egan SE, Giddings BW, Brooks MW, Buday L, Sizeland AM and Weinberg RA (1993). Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 363:45–51

    PubMed  CAS  Google Scholar 

  • Egelman EH, Francis N and DeRosier DJ (1982). F-actin is a helix with a random variable twist. Nature 298:131–135

    PubMed  CAS  Google Scholar 

  • Einheber S and Fischman DA (1990). Isolation and characterization of a cDNA clone encoding avian skeletal muscle C-protein: an intracellular member of the immunoglobulin superfamily. Proceedings of the National Academy of Sciences of the USA 87:2157–2161

    PubMed  CAS  Google Scholar 

  • Falcone G, Alemà S and Tatò F (1991). Transcription of muscle-specific genes is repressed by reactivation pp60v-src in postmitotic myotubes. Mol Cell Biol 11:3331–3338

    PubMed  CAS  Google Scholar 

  • Funatsu T, Higuchi H and Ishiwata S (1990). Elastic filaments in skeletal muscle revealed by selective removal of thin filaments with plasma gelsolin. J Cell Biol 110:53–62

    PubMed  CAS  Google Scholar 

  • Fürst DO, Osborn M, Nave R and Weber K (1988). The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy; a map of ten non-repetitive epitopes starting at the Z line extends close to the M line. J Cell Biol 106:1563–1572

    PubMed  Google Scholar 

  • Fürst DO, Osborn M and Weber K (1989). Myogenesis in the mouse embryo: differential onset of expression of myogenic proteins and the involvement of titin in myofibril assembly. J Cell Biol 109:517–527

    PubMed  Google Scholar 

  • Fürst DO, Vinkemeier U and Weber K (1992). Mammalian skeletal muscle C-protein: purification from bovine muscle, binding to titin and the characterization of a full length human cDNA. J Cell Sci 102:769–778

    PubMed  Google Scholar 

  • Fürst DO and Gautel M (1995). The anatomy of a molecular giant: How the sarcomere cytoskeleton is assembled from immunoglobulin superfamily molecules. J Mol Cell Cardiol 27:951–960

    PubMed  Google Scholar 

  • Garvey JL, Kranias EG and Solaro RJ (1988). Phosphorylation of C-protein,troponinI and phospholamban in isolated rabbit hearts. Biochem J 249:709–714

    PubMed  CAS  Google Scholar 

  • Gautel M, Leonard K and Labeit S (1993a). Phosphorylation of KSP motifs in the Cterminal region of titin in differentiating myoblasts. EMBO J 12:3827–3834

    PubMed  CAS  Google Scholar 

  • Gautel M, Lakey A, Barlow DP, Holmes Z, Scales S, Leonard K, Labeit S, Mygland A, Gilhus NE and Aarli JA (1993b). Titin antibodies in myasthenia gravis: identification of a major immunogenic region of titin. Neurology 43:1581–1585

    PubMed  CAS  Google Scholar 

  • Gautel M, Zuffardi O, Freiburg A and Labeit S (1995). Phosphorylation switches specific for the cardiac isoform of myosin binding protein-C: a modulator of cardiac contraction? EMBO J 14:1952–1960

    PubMed  CAS  Google Scholar 

  • Gautel M, Castiglione Morelli M, Pfuhl M, Motta A and Pastore A (1995). A calmodulin-binding sequence in the C-terminus of human cardiac titin kinase. Eur J Biochem 230:752–759

    PubMed  CAS  Google Scholar 

  • Gautel M, Goulding D, Bullard B, Weber K and Fürst DO (1996a). The central Z-disk region of titin is assembled from a novel repeat in variable copy numbers. J Cell Sci 109:2747–2754

    PubMed  CAS  Google Scholar 

  • Gautel M, Lehtonen E and Pietruschka F (1996b). Assembly of the cardiac I-band region of titin/connectin: expression of the cardiac-specific regions and their relation to the elastic segments. J Muscle Res Cell Motil 17:449–461

    PubMed  CAS  Google Scholar 

  • Gautel M (1996c). The super-repeats of titin/connectin and their interactions: glimpses at sarcomeric assembly. Adv Biophys 33:27–37

    PubMed  CAS  Google Scholar 

  • Gautel M and Goulding D (1996). A molecular map of titin/connectin elasticity reveals two different mechanisms acting in series. FEBS lett 385:11–14

    PubMed  CAS  Google Scholar 

  • Gautel M, Fürst DO, Cocco A and Schiaffino S (1998). Isoform transitions of the myosin-binding protein C family in developing human and mouse muscles suggests a lack of isoform transcomplementation in cardiac muscle. Circulation Res (in press)

    Google Scholar 

  • Goedert M, Hasegawa M, Jakes R, Lawler S, Cuenda A and Cohen P (1997). Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases. FEBS Lett 409:57–62

    PubMed  CAS  Google Scholar 

  • Handel SE, Wang S-M, Greaser ML, Schultz E, Bulinski JC and Lessard JL (1989). Skeletal muscle myofibrillogenesis as revealed with monoclonal antibody to titin in combination with detection of the αand γ-isoforms of actin. Dev Biol 132:35–44

    PubMed  CAS  Google Scholar 

  • Harder BA, Schaub MC, Eppenberger HM and Eppenberger-Eberhardt M (1996). Influence of fibroblast growth factor (bFGF) and insulin like growth factor (IGFI) on cytoskeletal and contractile structures and on atrial natriuretic factor (ANF) expression in adult rat ventricular cardiomyocytes in culture. J Mol Cell Cardiol 28:19–31

    PubMed  CAS  Google Scholar 

  • Hartzell HC and Titus L (1982). Effects of cholinergic and adrenergic agonists on Phosphorylation of 165,000-dalton myofibrillar protein in intact cardiac muscle. J Biol Chem 257:2111–2120

    PubMed  CAS  Google Scholar 

  • Hartzell HC and Glass DB (1984). Phosphorylation of purified cardiac muscle C-protein by purified cAMP-dependent and endogenous Ca2+-calmodulindependent protein kinases. J Biol Chem 259:15587–15596

    PubMed  CAS  Google Scholar 

  • Hartzell HC (1985). Effects of phosphorylated and unphosphorylated C-protein on cardiac actomyosin ATPase. J Mol Biol 186:185–195

    PubMed  CAS  Google Scholar 

  • Hefti MA, Harder BA, Eppenberger HM and Schaub MC (1997). Signaling pathways in cardiac myocyte hypertrophy. J Mol Cell. Cardiol 29:2873–2892

    PubMed  CAS  Google Scholar 

  • Heierhorst J, Probst WC, Vilim FS, Buku A and Weiss KR (1994). Autophosphorylation of molluscan twitchin and interaction of its kinase domain with calcium/calmodulin. J Biol Chem 269:21086–21093

    PubMed  CAS  Google Scholar 

  • Heierhorst J, Probst WC, Kohanski RA, Buku A and Weiss KR (1995). Phosphorylation of myosin regulatory light chains by the molluscan twitchin kinase. Eur J Biochem 233:426–431

    PubMed  CAS  Google Scholar 

  • Heierhorst J, Kobe B, Feil S, Parker MW, Benian GM, Weiss KR and Kemp B (1996a). Ca2+ /S100 regulation of giant protein kinases. Nature 380:636–639

    PubMed  CAS  Google Scholar 

  • Heierhorst J, Tang X, Lei J, Probst WC, Weiss KR, Kemp BE and Benian GB (1996b). Substrate specificity and inhibitor sensitivity of Ca2+ /S100-dependent protein kinases. Eur J Biochem. 242:454–459

    PubMed  CAS  Google Scholar 

  • Higgins D, Labeit S, Gautel M and Gibson T (1993). The evolution of titin and related giant muscle proteins. J Mol Evolution 38:395–404

    Google Scholar 

  • Horowits R, Kempner ES, Bisher ME and Podolsky RJ (1986). A physiological role for titin and nebulin in skeletal muscle. Nature 323:160–164

    PubMed  CAS  Google Scholar 

  • Houmeida A, Holt J, Tskhovrebova L and Trinick J (1995). Studies of the interaction between titin and myosin. J Cell Biol 131:1471–1481

    PubMed  CAS  Google Scholar 

  • Hu SH, Parker MW, Lei JY, Wilce MCW, MBG and E KB (1994). Insights into autoregulation from the crystal structure of twitchin kinase. Nature 369:581–584

    PubMed  CAS  Google Scholar 

  • Ishizaki T, Maekawa M, Fujisawa K, Okawa K, Iwamatu A, Fujita A, Watanabe N, Saito Y, Kakizuka A, Morii N and Narumiya S (1996). The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J 15:1885–1893

    PubMed  CAS  Google Scholar 

  • Ito H, Hiroe M, Hirata Y, Tsujino M, Adachi S, Shichiri M, Koike A, Nogami A and Marumo F (1993). Insulin-like growth factor-I induces hypertrophy with enhanced expression of muscle specific genes in cultured rat cardiomyocytes. Circ 87:1715–1721

    CAS  Google Scholar 

  • Itoh Y, Suzuki T, Kimura S, Ohashi K, Higuchi H, Sawada H, Shimizu T, Shibata M and Maruyama K (1988). Extensible and less extensible domains of connectin filaments in stretched vertebrate skeletal muscle sarcomeres as detected by immunofluorescence and immunoelectron microscopy using monoclonal antibodies. J Biochem 104:504–508

    PubMed  CAS  Google Scholar 

  • Jeacocke S and England P (1980). Phosphorylation of a myofibrillar protein of Mr 150000 in perfused rat heart, and the tentative identification of this as C-protein. FEBS Lett 122:129–132

    PubMed  CAS  Google Scholar 

  • Jeng CJ and Wang SM (1992). Interaction Between Titin and a-Actinin. Biomedi Res 13:197–202

    Google Scholar 

  • Johnson GL and Vaillancourt RR (1994). Sequential protein kinase reactions controlling cell growth and differentiation. Curr Opin Cell Biol 6:230–238

    PubMed  CAS  Google Scholar 

  • Johnson LN, Noble MEM and Owen DJ (1996). Active and inactive protein kinases: structural basis for regulation. Cell 85:149–158

    PubMed  CAS  Google Scholar 

  • Kasahara HMI, Sugiyama T, Kido N, Hayashi H, Saito H, Tsukita S and Kato N (1994). Autoimmune myocarditis induced in mice by cardiac C-protein. Cloning of complementary DNA encoding murine cardiac C-protein and partial characterization of the antigenic peptides. J Clin Invest 94:1026–1036

    PubMed  CAS  Google Scholar 

  • Kennelly PJ, Edelman AM, Blumenthal DK and Krebs EG (1987). Rabbit skeletal muscle myosin light chain kinase. The calmodulin binding domain as a potential active site-directed inhibitory domain. J Biol Chem 262:11958–11963

    PubMed  CAS  Google Scholar 

  • Kobe B, Heierhorst J, Feil SC, Parker MW, Benian GB, Weiss KR and Kemp BE (1996). Giant protein kinases: domain interactions and structural basis of autoregulation. EMBO J 15:6810–6821

    PubMed  CAS  Google Scholar 

  • Komiyama M, Maruyama K and Shimada Y (1990). Assembly of connectin (titin) in relation to myosin and a-actinin in cultured cardiac myocytes. J Muscle Res Cell Motil 11:419–428

    PubMed  CAS  Google Scholar 

  • Labeit S, Barlow DP, Gautel M, Gibson T, Holt J, Hsieh C-L, Francke U, Leonard K, Wardale J, Whiting A and Trinick J (1990). A regular pattern of two types of 100residue motif in the sequence of titin. Nature 345:273–276

    PubMed  CAS  Google Scholar 

  • Labeit S, Gautel M, Lakey A and Trinick J (1992). Towards a molecular understanding of titin. EMBO J 11:1711–1716

    PubMed  CAS  Google Scholar 

  • Labeit S and Kolmerer B (1995a). Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270:293–296

    PubMed  CAS  Google Scholar 

  • Labeit S and Kolmerer B (1995b). The complete primary structure of human nebulin and its correlation to muscle structure. J Mol Biol 248:308–315

    PubMed  CAS  Google Scholar 

  • LaMorte J, Thorburn J, Absher D, Spiegel A, Heller Browns J, Chien KR, Feramisco JR and Knowlton KU (1994). Gqand Ras-dependent pathways mediate hypertrophy of neonatal rat ventricular myocytes following al-adrenergic stimulation. J Biol Chem 269:13490–14496

    PubMed  CAS  Google Scholar 

  • Lazaro JB, Kitzmann M, Poul MA, Vandromme M, Lamb NJ, Fernandez A (1997). Cyclin dependent kinase 5, cdk5, is a positive regulator of myogenesis in mouse C2 cells. J Cel Sci 110:1251–1260

    CAS  Google Scholar 

  • Lechner C, Zahalk A. M., Giot J, Moller N and Ullrich A (1996). ERK6, a mitogenactivated protein kinase involved in C2C12 myoblast differentiation. Proc Natl Acad Sci USA 93:4355–4359

    PubMed  CAS  Google Scholar 

  • Lee VM-Y, Otvos L, Carden J, Hollosi M, Dietzschold B and Lazzarini RA (1988). Identification of the major multiphosphorylation site in mammalian neurofilaments. Proc Natl Acad Sci USA 85:1998–2002

    PubMed  CAS  Google Scholar 

  • Lei J, Tang X, Chamber TC, Pohl J and Benian GM (1994). The protein kinase domain of twitchin has protein kinase activity and an autoinhibitory domain. J Biol Chem 269:21078–21085

    PubMed  CAS  Google Scholar 

  • Lew J, Winkfein RJ, Paudel HK and Wang JH (1992). Brain proline-directed protein kinase is a neurofilament kinase which displays high sequence homology to p34cdc2. J Biol Chem 267:25922–25926

    PubMed  CAS  Google Scholar 

  • Lew J, Huang, Q-Q, Qi Z, Winkfein RJ, Ebersold R, Hunt T and Wang JH (1994). A brain-specific activator of cyclin-dependent protein kinase 5. Nature 371:423–426

    PubMed  CAS  Google Scholar 

  • Lin ZX, Eshelman JR, Forry S, Duran S, Lessard JL and Holtzer H (1987). Sequential disassembly of myofibrils induced by myristate acetate in cultured myotubes. J Cell Biol 105:1365–1376

    PubMed  CAS  Google Scholar 

  • Lin ZX, Eshleman J, Grund C, Fischman DA, Masaki T, Franke WW and Holtzer H (1989). Differential response of myofibrillar and cytoskeletal proteins in cells treated with phorbol myristate acetate. J Cell Biol 108:1079–1091

    PubMed  CAS  Google Scholar 

  • Lin ZX, Lu MH, Schultheiss T, Choi J, Holtzer S, Dilullo C, Fischman DA and Holtzer H (1994). Sequential appearance of muscle-specific proteins in myoblasts as a function of time after cell division: Evidence for a conserved myoblast differentiation program in skeletal muscle. Cell Motil Cytoskeleton 29:1–19

    PubMed  CAS  Google Scholar 

  • Linke WA, Ivemeyer M, Olivieri N, Kolmerer B, Rüegg JC and Labeit S. (1996). Towards a molecular understanding of the elasticity of titin. J Mol Biol 261:62–71

    PubMed  CAS  Google Scholar 

  • Lowe ED, Noble MEM, Skamnaki VTS, Oikonomakos NG, Owen DJ and Johnson LN (1997). The crystal structure of a phosphorylase kinase peptide substrate complex: kinase substrate recognition. EMBO J 16:6646–6658

    PubMed  CAS  Google Scholar 

  • Luther PK (1991). Three-dimensional reconstruction of a simple Z-band in fish muscle. J Cell Biol 113:1043–1055

    PubMed  CAS  Google Scholar 

  • Maruyama K, Matsubara S, Natori R, Nonomura Y, Kimura S, Ohashi K, Murakami F, Handa S and Eguchi G (1977). Connectin, an elastic protein of muscle: characterization and function. J Biochem 82:317–337

    PubMed  CAS  Google Scholar 

  • Maruyama K, Sawada H, Kimura S, Ohashi K, Higuchi H and Umazume Y (1984). Connectin filaments in stretched skinned fibers of frog skeletal muscle. J Cell Biol 99:1391–1397

    PubMed  CAS  Google Scholar 

  • Maruyama K, Yoshioka T, Higuchi H, Ohashi K, Kimura S and Natori R (1985). Connectin filaments link thick filaments and Z lines in frog skeletal muscle as revealed by immunoelectron microscopy. J Cell Biol 101:2167–2172

    PubMed  CAS  Google Scholar 

  • Maruyama K, Endo T, Kume H, Kawamura Y, Kanzawa N, Nakauchi Y, Kimura S, Kawashima S and Maruyama K (1993). A novel domain sequence of connectin localized at the I band of skeletal muscle sarcomeres: homology to neurofilament subunits. Biochem Biophys Res Comm 194:1288–1291

    PubMed  CAS  Google Scholar 

  • Maruyama K, Endo T, Kume H, Kawamura Y, Kanzawa N, Kimura S, Kawashima S and Maruyama K (1994). A partial connectin cDNA encoding a novel type of RSP motifs isolated from embryonic skeletal muscle. J Biochem 115:147–149

    PubMed  CAS  Google Scholar 

  • Maruyama K (1997). Connectin/titin, giant elastic protein of muscle. FASEB J 11:341–345

    PubMed  CAS  Google Scholar 

  • Matsui T, Amano M, Yamamoto T, Chihara K, Nakafuka M, Ito M, Nakano T, Okawa K, Iwamatsu A and Kaibuchi K (1996). Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho EMBO J 15:2208–2216

    PubMed  CAS  Google Scholar 

  • Maw MC and Rowe AJ (1986). The reconstitution of myosin filaments in rabbit psoas muscle from solubilized myosin. J Muscle Res Cell Motil 7:97–109

    PubMed  CAS  Google Scholar 

  • Moncman CL and Wang K (1995). Nebulette: a 107 kD nebulin-like protein in cardiac muscle. Cell Motil Cytoskel 32:205–225

    CAS  Google Scholar 

  • Morris EP and Squire J (1990). The three-dimensional structure of the nemaline rod Z-band. J Cell Biol 111:2961–2978

    PubMed  CAS  Google Scholar 

  • Mues A, van der Ven PF, Young P, Fürst DO, Gautel M (1998). Two immunoglobinlike domains of the Z-disc portion of titin interact in a conformation-dependent way with telethonin. FEBS Lett 428:111–114

    PubMed  CAS  Google Scholar 

  • Mukai H, Toshimori M, Shibata H, Takanaga H, Kitagawa M, Miyahara M, Shimakawa M and Shimakawa Y O (1997). Interaction of PKN with alpha-actinin. J Biol Chem 272:4740–4746

    PubMed  CAS  Google Scholar 

  • Musacchio A, Saraste M and Wilmanns M (1994). High-resolution crystal structures of tyrosine kinase SH3 domains complexed with proline-rich peptides. Nat Struct Biol 1:546–551

    PubMed  CAS  Google Scholar 

  • Nakagawa O, Fujisawa K, Ishizaki T, Saito Y, Nakao K and Narumiya S (1996). ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett 392:189–193

    PubMed  CAS  Google Scholar 

  • Narumiya S, Ishizaki T and Watanabe N (1997). Rho effectors and reorganization of actin cytoskeleton. FEBS Lett 410:68–72

    PubMed  CAS  Google Scholar 

  • Nave R, Fürst D, Vinkemeier U and Weber K (1991). Purification and physical properties of nematode mini-titins and their relation to twitchin. J Cell Sci 98:491–496.

    PubMed  CAS  Google Scholar 

  • Obermann W, Plessmann U, Weber K and Fürst DO (1995). Purification and biochemical characterization of myomesin, a myosin and titin binding protein, from bovine skeletal muscle. Eur J Biochem 233:110–115

    PubMed  CAS  Google Scholar 

  • Obermann WMJ, Gautel M, Steiner F, Van der Ven P, Weber K and Fürst DO (1996). The structure of the sarcomeric M band: localization of defined domains of myomesin, M-protein and the 250 kD carboxy-terminal region of titin by immunoelectron microscopy. J Cell Biol 134:1441–1453

    PubMed  CAS  Google Scholar 

  • Obermann WMJ, Gautel M, Weber K and Fürst DO (1997). Molecular structure of the sarcomeric M band: mapping of titinand myosin-binding domains in myomesin and the identification of a potential regulatory phosphorylation site in myomesin. EMBO J 16:211–220

    PubMed  CAS  Google Scholar 

  • Obinata T, Reinach FC, Bader DM, Masaki T, Kitani S and Fischman DA (1984). Immunochemical analysis of C-protein isoform transitions during the development of chicken skeletal muscle. Developmental Biol 101:116–124

    CAS  Google Scholar 

  • Offer G, Moos C and Starr R (1973). A new protein of the thick filaments. Extraction, purification, and characterization. J Mol Biol 74:653–676

    PubMed  CAS  Google Scholar 

  • Ohtsuka H, Yajami H, Maruyama K and Kimura S (1997a). The N-Terminal Z Repeat 5 of connectin/Titin Binds to the C-Terminal Region of a-Actinin. Biochem Biophys Res Comm 235:1–3

    PubMed  CAS  Google Scholar 

  • Ohtsuka H, Yajima H, Maruyama K and Kimura S (1997b). Binding of the N-terminal 63 kDa portion of connectin/titin to alpha actinin. FEBS Lett 401:65–67

    PubMed  CAS  Google Scholar 

  • Okagaki T, Weber FE, Fischman DA, Vaughan KT, Mikawa T and Reinach FC (1993). The major myosin-binding domain of skeletal muscle MyBP-C (C-protein) resides in the COOH-terminal, immunoglobulin C2 motif. J Cell Biol 123:619–626.

    PubMed  CAS  Google Scholar 

  • Paterson HF, Self AJ, Garrett MD, Just I, Aktories K and Hall A (1990). Microinjection of recombinant p21rho induces rapid changes in cell morphology. J Cell Biol 111:1001–1007.

    PubMed  CAS  Google Scholar 

  • Pearson RB and Kemp BE (1991). Protein kinase phosphorylation site sequences and consensus specifity motifs: tabulations. Meth Enzymol 200:62–81

    PubMed  CAS  Google Scholar 

  • Peckham M, Young P and Gautel M (1997). Constitutive and Variable Regions of Zdisk Titin/Connectin in Myofibril Formation: A Dominant-negative Screen. Cell Struct Funct 22:95–101

    PubMed  CAS  Google Scholar 

  • Pfuhl M, Winder SJ and Pastore A (1994). Nebulin, a helical actin binding protein. EMBO J 13:1782–1789

    PubMed  CAS  Google Scholar 

  • Pfuhl M, Winder SJ, Castiglione Morelli MA, Labeit S, Pastore A (1996). Correlation between conformational and binding properties of nebulin repeats. J Mol Biol 257:367–384.

    PubMed  CAS  Google Scholar 

  • Politou A, Millevoi S, Gautel M, Kolmerer B and Pastore A (1997). SH3 in muscle: solution structure of the nebulin SH3. J Mol Biol (in press)

    Google Scholar 

  • Pomiès P, Louis H and Beckerle M (1997). CRP1, a LIM domain protein implicated in muscle differentiation, interacts with a-actinin. J Cell Biol 139:157–168

    PubMed  Google Scholar 

  • Puceat M, Hilaldandan R, Strulovici B, Brunton LL and Brown JH (1994). Differential regulation of protein kinase C isoforms in isolated neonatal and adult rat cardiomyocytes. J Biol Chem 269:16938–16944

    PubMed  CAS  Google Scholar 

  • Ramocki MB, Johnson SE, White MA, Ashendel CL, Konieczny SF and Taparowsky EJ (1997). Signaling through mitogen-activated protein kinase and Rac/Rho does not duplicate the effects of activated Ras on skeletal myogenesis. Mol Cell Biol 17:3547–3555

    PubMed  CAS  Google Scholar 

  • Ridley AJ, Paterson HF, Johnston CL, Diekmann D and Hall A (1992). The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410

    PubMed  CAS  Google Scholar 

  • Rottbauer W, Gautel M, Zehelein J, Labeit S, Franz WM, Grünig E, Brown BD, Vollrath B, Mall G, Dietz R and Katus HA (1997). Novel splice donor site mutation in the cardiac myosin-binding protein-C gene in familial hypertrophic cardiomyopathy. Characterization of transcript and protein. J Clin Invest 100:475–482

    PubMed  CAS  Google Scholar 

  • Rowe RWD (1973). The ultrastructure of the Z discs from white, intermediate and red fibres of mammalian striated muscle. J Cell Biol 57:261–277

    PubMed  CAS  Google Scholar 

  • Schafer DA, Hug C and Cooper JA (1995). Inhibition of CapZ during myofibrillogenesis alters assembly of actin filaments. J Cell Biol 128:61–70

    PubMed  CAS  Google Scholar 

  • Schafer D, Jennings P and Cooper J (1996). Dynamics of capping protein and actin assembly in vitro: uncapping barbed ends by polyphosphoinositides. J Cell Biol 135:168–179

    Google Scholar 

  • Schäfer BW and Heizmann C (1996). The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci 21:134–140

    PubMed  Google Scholar 

  • Schaub MC, Hefti M, Harder BA and Eppenberger HM (1997). Various hypertrophic stimuli induce distinct phenotypes in cardiomyocytes. J Mol Med 75:901–920

    PubMed  CAS  Google Scholar 

  • Schlender KK and Bean LJ (1991). Phosphorylation of chicken cardiac C-protein by calcium/calmodulin-dependent protein kinase II. J Biol Chem 266:2811–2817

    PubMed  CAS  Google Scholar 

  • Schroeter JP, Bretaudiere JP, Sass RL and Goldstein MA (1996). Three-dimensional structure of the Z band in a normal mammalian skeletal muscle. J Cell Biol 133:571–583

    PubMed  CAS  Google Scholar 

  • Schultheiss T, Choi J, Lin ZX, DiLullo C, Cohen-Gould L, Fischman D and Holtzer H (1992). A sarcomeric a-actinin truncated at the carboxyl end induces the breakdown of stress fibers in PtK2 cells and the formation of nemaline-like bodies and breakdown of myofibrils in myotubes. Proc Natl Acad Sci USA 89:9282–9286

    PubMed  CAS  Google Scholar 

  • Sebestyén MG, Wolff JA and Greaser ML (1995). Characterization of a 5.4 kb cDNA fragment from the Z-line region or rabbit cardiac titin reveals phosphorylation sites for proline-directed kinases. J Cell Sci 108:3029–3037

    PubMed  Google Scholar 

  • Sebestyén MG, Fritz JD, Wolff JA and Greaser ML (1996). Primary structure of the kinase domain region of rabbit skeletal and cardiac titin. J Muscle Res Cell Motil 17:343–348

    PubMed  Google Scholar 

  • Shetty KT, Link WT and Pant HC (1993). cdc2-like kinase from rat spinal cord specifically phosphorylates KSPXK motifs in neurofilament proteins: isolation and characterization. Proc Natl Acad Sci USA 90:6844–6848

    PubMed  CAS  Google Scholar 

  • Sjöström M and Squire JM (1977). Fine structure of the A-band in cryosections: the structure of the A-band of human sskeletal fibers from ultrathin cryo-sections negatively stained. J Mol Biol 109:49–68

    PubMed  Google Scholar 

  • Sommerville LL and Wang K (1987). In vivo phosphorylation of titin and nebulin in frog skeletal muscle. Biochem Biophys Res Comm 147:986–992

    Google Scholar 

  • Songyang Z, Blechner S, Hoagland N, Hoekstra MF, Piwnica-Worms H and Cantley LC (1994). Use of an oriented peptide library to determine the optimal substrates of protein kinases. Current Biology 4:973–982

    PubMed  CAS  Google Scholar 

  • Songyang Z, Lu KP, Kwon YT, Tsai LH, Filhol O, Cochet C, Brickey DA, Soderling TR, Bartleson C, Graves DJ, DeMaggio AJ, Hoekstra MF, Blenis J, Hunter T and Cantley LC (1996). A structural basis for substrate specificities of protein Ser/Thr kinases: Primary sequence preference of Casein Kinase I and II, Phosphorylase Kinase, Calmodulin-dependent Kinase II, CDK5 and Erkl. Mol Cell Biol 16:6486–6493.

    PubMed  CAS  Google Scholar 

  • Sorimachi H, Freiburg A, Kolmerer B, Ishiura S, Stier G, Gregorio CC, Labeit D, Linke WA, Suzuki K and Labeit S (1997). Tissue-specific expression and alphaactinin binding properties of the Z-disc titin: implications for the nature of vertebrate Z-discs. J Mol Biol. 270:688–695

    PubMed  CAS  Google Scholar 

  • Soteriou A, Gamage M and Trinick J (1993). A survey of interactions made by the giant protein titin. J Cell Sci 104:119–123

    PubMed  CAS  Google Scholar 

  • Squire J (1981). The Structural Basis of Muscular Contraction. Plenum Press, New York and London. 364–375

    Google Scholar 

  • Sutherland CJ, Esser KA, Elsom VL, Gordon ML and Hardeman EC (1993). Identification of a program of contractile protein gene expression initiated upon skeletal muscle differentiation. Dev Dynam 196:25–36

    CAS  Google Scholar 

  • Terai M, Komiyama M and Shimada Y (1989). Myofibril assembly is linked with vinculin, a-actinin, and cell-substrate contacts in embryonic cardiac myocytes. Cell Mot Cytoskeleton 12:185–194

    CAS  Google Scholar 

  • Thomas SM, Soriano P and Imamoto A. (1995). Specific and redundant roles of Src and Fyn in organizing the cytoskeleton. Nature 276:267–271

    Google Scholar 

  • Thorburn J and Thorburn A (1994). The tyrosine kinase inhibitor, genistein, prevents alpha-adrenergic-induced cardiac muscle cell hypertrophy by inhibiting activation of the Ras-MAP kinase signaling pathway. Biochem Biophys Res Commun 202:1586–1591

    PubMed  CAS  Google Scholar 

  • Thorburn J, Xu S and Thorburn A (1997). MAP kinaseand Rho-dependent signals interact to regulate gene expression but not actin morphology in cardiac muscle cells. EMBO J 16:1888–1900

    PubMed  CAS  Google Scholar 

  • Tokuyasu KT and Maher PA (1987a). Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos.I. Presence of immunofluorescent titin spots in premyofibril stages. J Cell Biol 105:2781–2793

    PubMed  CAS  Google Scholar 

  • Tokuyasu KT and Maher PA (1987b). Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos.II. Generation of a-actinin dots within titin spots at the time of the first myofibril formation. J Cell Biol 105:2795–2801

    PubMed  CAS  Google Scholar 

  • Trinick J (1994). Titin and nebulin: protein rulers in muscle? Trends. Biochem Sci 19:405–409

    PubMed  CAS  Google Scholar 

  • Trinick J (1996). Titin as a scaffold and spring. Current Biology 6:258–260

    PubMed  CAS  Google Scholar 

  • Tsai L-H, Delalle I, Caviness VS, Chae T and Harlow E (1994). p35 is a neuralspecific regulatory subunit of cyclin-dependent protein kinase 5. Nature 371:419–423

    PubMed  CAS  Google Scholar 

  • Turnacioglu KK, Mittal B, Sanger JM and Sanger JW (1996). Partial characterization of zeugmatin indicates that it is part of the Z-band region of titin. Cell Motil Cytoskel 34:108–121

    CAS  Google Scholar 

  • Valle G, Faulkner G, De Antoni A, Pacchioni B, Pallavacini A, Pandolfo D, Tiso N, Toppo S, Trevisan and Lanfranchi G (1997). Telethonin, a novel sarcomeric protein of heart and skeletal muscle. FEBS Lett 415:163–168

    PubMed  CAS  Google Scholar 

  • Van der Loop FTL, van der Ven PFM, Fürst DO, Gautel M, van Eys GJJM and Ramaekers FCS (1996). Integration of titin into the sarcomeres of cultured differentiating human skeletal muscle cells. Eur J Biol 69:301–307

    Google Scholar 

  • Van der Ven PFM, Schaart G, Croes HJE, Jap PHK, Ginsel LA and Ramaekers FCS (1993). Titin aggregates associated with intermediate filaments align along stress fiber-like structures during human skeletal muscle cell differentiation. J Cell Sci 106:749–759

    PubMed  Google Scholar 

  • Vaughan KT, Weber FE, Einheber S and Fischman DA (1993). Molecular cloning of chicken myosin-binding protein (MyBP) H (86-kDa protein) reveals extensive homology with MyBP-C (C-protein) with conserved immunoglobulin C2 and fibronectin type III motifs. J Biol Chem 268:3670–3676

    PubMed  CAS  Google Scholar 

  • Vibert P, Edelstein SM, Castellani L and Elliot BW (1993). Mini-titins in striated and smooth molluscan muscles: structure, location and immunological crossreactivity. J Muscle Res Cell Motil 14:598–607

    PubMed  CAS  Google Scholar 

  • Vigoreaux JO (1994). The muscle 2 band: lessons in stress management. J Muscle Res Cell Motil 15:237–255

    PubMed  CAS  Google Scholar 

  • Vinkemeier U, Obermann W, Weber K and Fürst DO (1993). The globular head domain of titin extends into the center of the sarcomeric M band. J Cell Sci 106:319–330

    PubMed  CAS  Google Scholar 

  • Vojtek AB, Hollenberg SM and Cooper JA (1993). Mammalian Ras interacts directly with the serine/threonine kinase. Raf Cell 74:205–214

    CAS  Google Scholar 

  • Vojtek AB and Cooper JA (1995). Rho family members: activators of MAP kinase cascades. Cell 82:527–529

    PubMed  CAS  Google Scholar 

  • Wang K, McClure J and Tu A (1979). Titin: Major myofibrillar components of striated muscle. Proc Natl Acad Sci USA 76:3698–3702

    PubMed  CAS  Google Scholar 

  • Wang SM, Greaser M, Schultz E, Bulinsky JC, Lin JJ-C and Lessard J (1988). Studies on cardiac myofibrillogenesis with antobodies against titin, tropomyosin and myosin. J Cell Biol 107:1075–1083

    PubMed  CAS  Google Scholar 

  • Wang K and Wright J (1988). Architecture of the sarcomere matrix of skeletal muscle: Immunoelectron microscopic evidence that suggests a set of parallel inextensive nebulin filaments anchored at the Z-line. J Cell Biol 107:2199–2212

    PubMed  CAS  Google Scholar 

  • Wang K, McCarter R, Wright J, Beverly J and Ramirez-Mitchell R (1993). Viscoelasticity of the sarcomere matrix of skeletal muscles. Biophys J 64:1161–1177

    PubMed  CAS  Google Scholar 

  • Wang K, Knipfer M, Huang Q, van Heerden A, Hsu L, Gutierrez G, Quia X and Stedman H (1996). Human skeletal muscle nebulin sequence encodes a. blueprint for thin filament architecture: Sequence motifs and affinity profiles of tandem repeats and terminal SH3. J Biol Chem 271:4303–4314

    Google Scholar 

  • Wang B, Golemis E and Kruh G D (1997). ArgBP2, a multiple Src Homology 3 Domain-containing, Arg/Abl-interacting protein, is phosphorylated in v-Abltransformed cells and localized in stress fibers and cardyocyte Z-disks. J Biol Chem 17542–17560

    Google Scholar 

  • Watanabe G, Saito Y, Madaule P, Ishizaki T, Fujisawa K, Morii N, Mukai H, Ono Y, Kakizuka A and Narumiya S (1996). Protein kinase N (PKN) and PKN-related protein rhophilin as targets of small GTPase Rho. Science 271:645–648

    PubMed  CAS  Google Scholar 

  • Watkins H, Conner D, Thierfelder, L, Jarcho JA, MacRae C, McKenna WJ, Maron BJ, Seidman JG and Seidman CE (1995). Mutations in the cardiac myosin-binding protein-C on chromosome 11 cause familial hypertrophic cardiomyopathy. Nature Genet 11:434–437

    PubMed  CAS  Google Scholar 

  • Weisberg A and Winegrad S (1996). Alteration of myosin cross bridges by phosphorylation of myosin-bindig protein C in cardiac muscle. Proc Natl Acad Sci USA 93:8999–9003

    PubMed  CAS  Google Scholar 

  • Weintraub H, Dwarki VJ, Verma I, Davis R, Hollenberg S, Snider L, Lassar A and Tapscott SJ (1991). Muscle-specific transcriptional activation by MyoD. Genes & Development 5:1377–1386

    CAS  Google Scholar 

  • Whiting A, Wardale J and Trinick J (1989). Does titin regulate the length of thick filaments? J Mol Biol 205:263–268

    PubMed  CAS  Google Scholar 

  • Wu H and Parsons JT (1993). Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex. J Cell Biol 120:1417–1426

    PubMed  CAS  Google Scholar 

  • Xia H, Winokur ST, Kuo W-L, Altherr M and Bredt D (1997). Actinin-associated LIM-protein: Identification of a domain interaction between PDZ and spctrinlike motifs. J Cell Bol 139:507–515

    CAS  Google Scholar 

  • Yajima H, Ohtsuka H, Kawamura Y, Kume H, Murayama T, Abe H, Kimura S and Maruyama K (1996). A 11.5-kb 5′-terminal cDNA sequence of chicken breast muscle connectin/titin reveals its Z line binding region. Biochem Biophys Res Comm 223:160–164

    PubMed  CAS  Google Scholar 

  • Yamaguchi M, Izumimoto M, Robson RM and Stromer MH (1985). Fine structure of wide and narrow vertebrate muscle Z-lines. J Mol Biol 184:621–643

    PubMed  CAS  Google Scholar 

  • Yamamoto K and Moos C (1983). The C-proteins of rabbit red, white and cardiac muscles. J Biol Chem 258:8395–8401

    PubMed  CAS  Google Scholar 

  • Yasuda M, Koshida S, Sato N and Obinata T (1995). Complete primary structure of chicken cardiac C-protein (MyBP-C) its expression in developing striated muscles. J Mol Cell Cardiol 27:2275–2286

    PubMed  CAS  Google Scholar 

  • Yoon H and Boettiger D (1994). Expression of v-Src alters the expression of myogenic regulatory factor genes. Oncogene 9:801–807

    PubMed  CAS  Google Scholar 

  • Young P, Ferguson C, Bañuelos S and Gautel M (1998). Molecular structure of the sarcomeric Z-disk: two types of titin interactions lead to an asymmetrical sorting of α-actinin. EMBO J 17:1614–1624

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this chapter

Cite this chapter

Gautel, M., Mues, A., Young, P. (1999). Control of sarcomeric assembly: The flow of information on titin. In: Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0119625

Download citation

  • DOI: https://doi.org/10.1007/BFb0119625

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65484-1

  • Online ISBN: 978-3-540-49231-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics