Skip to main content

Substrate-directed synthesis: The rapid assembly of novel macropolycyclic structures via stereoregular diels-alder oligomerizations

  • Chapter
  • First Online:
Supramolecular Chemistry I — Directed Synthesis and Molecular Recognition

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 165))

Abstract

An increasing appreciation of molecular architecture and design will provide a greater impetus to tackle the exciting and elaborate structural targets that will confront chemistry in the twenty-first Century. It is, therefore, of the upmost importance that methods by which outwardly complex chemical systems can be assembled selectively, rapidly, and efficiently, are devised. Towards this goal, a trebly diastereoselective tandem Diels-Alder reaction sequence has been developed. Subsequently, we have demonstrated how this synthetic methodology can be utilized for the synthesis of novel macropolycyclic molecular structures. In each cycloaddition, the stereoelectronic characteristics, that are inherent in part of the rigid bicyclic frameworks of both bisdienophile and bisdiene building blocks, are used to dictate their respective modes of reaction. The outcome of this substrate-directed approach to organic synthesis allows the rapid and highly-controlled assembly of an increasing range of apparently complex molecular structures. The diastereoselectivities that are witnessed in each cycloaddition are rationalized as involving kinetically-controlled transition-state effects. The rationalization is based upon maximal vicinal staggering and the subsequent minimization of torsional strain within the rigid bicyclic framework in the transition state. In this survey, the application of the repetitive Diels-Alder approach for the synthesis of a wide range of macropolycyclic molecular structures is examined. The potential of these compounds as ideal precursors in the preparation of intriguing hydrocarbons is revealed. The pivotal role played by the sequential use of mild and forcing conditions — most notably the use of thermally- and high pressure-promoted Diels-Alder reactions — to produce oligomeric compounds in a predictable and stepwise manner is documented. Throughout these discussions, special attention has been given to the methods employed for the purification and characterization of this new class of unnatural products.

This work has been supported by the Science and Engineering Research Council, the Ministry of Defence in the United Kingdom, the Consiglio Nazionale delle Ricerche in Italy, and the National Economic Development Organization in Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. Corey EJ, Cheng X-M (1989) The logic of chemical synthesis. Wiley, New York

    Google Scholar 

  2. Warren SG (1982) Organic chemistry. The disconnection approach. Wiley, Chichester

    Google Scholar 

  3. Corey EJ (1988) Chem Soc Rev 17: 111

    CAS  Google Scholar 

  4. Kishi Y et al (1989) J Am Chem Soc 111: 7525

    Google Scholar 

  5. Kishi Y et al (1989) J Am Chem Soc 111: 7530

    Google Scholar 

  6. Davies JE, Gassen HG (1983) Angew Chem Int Ed Engl 22: 13

    Google Scholar 

  7. Williams RJP (June 1990) Chimicaoggi 8: 41

    CAS  Google Scholar 

  8. Schultz PG (1989) Angew Chem Int Ed Engl 28: 1283

    Google Scholar 

  9. Dervan PB (1986) Science 232: 464

    CAS  Google Scholar 

  10. Povsic TJ, Dervan PB (1989) J Am Chem Soc 111: 3059

    CAS  Google Scholar 

  11. Peppas NA, Walker CM (June 1990) Chimicaoggi. 8: 17

    CAS  Google Scholar 

  12. Mark H. (1990) Adv Mater 2: 7

    CAS  Google Scholar 

  13. Praefcke K, Kohne B, Singer D (1990) Angew Chem Int Ed Engl 29: 177

    Google Scholar 

  14. Tieke B (1990) Adv Mater 2: 222

    Google Scholar 

  15. Grant P (1990) Adv Mater 2: 232

    CAS  Google Scholar 

  16. Pedersen CJ (1967) J Am Che Soc 89: 2045

    Google Scholar 

  17. Pedersen CJ (1967) J Am Chem Soc 89: 7017

    CAS  Google Scholar 

  18. Dietrich B, Lehn J-M, Sauvage J-P (1969) Tetrahedron Lett 2885

    Google Scholar 

  19. Dietrich B, Lehn J-M, Sauvage J-P (1969) Tetrahedron Lett 2889

    Google Scholar 

  20. Cram DJ (1974) Science 183: 803

    CAS  Google Scholar 

  21. Breslow R (1982) Science 218: 532

    CAS  Google Scholar 

  22. Stoddart JF (1983) Annu Rep Prog Chem B80: 353

    Google Scholar 

  23. Colquhoun HM, Stoddart JF, Williams DJ (1986) Angew Chem Int Ed Engl 25: 487

    Google Scholar 

  24. Stoddart JF (1989) Ann Rep Prog Chem B86: 353

    Google Scholar 

  25. Lehn J-M (1985) Science 227: 849

    CAS  Google Scholar 

  26. Lutter HD, Diederich F (1986) Angew Chem Int Ed Engl 25: 1125

    Google Scholar 

  27. Lehn J-M (1988) Angew Chem Int Ed Engl 27: 89

    Google Scholar 

  28. Cram DJ (1988) Angew Chem Int Ed Engl 27: 1009

    Google Scholar 

  29. Pedersen CJ (1988) Angew Chem Int Ed Engl 27: 1021

    Google Scholar 

  30. Seebach D (1988) Angew Chem Int Ed Engl 27: 1624

    Google Scholar 

  31. Vögtle F (1989) Supramolekulare Chemie. BG Teubner, Stuttgart

    Google Scholar 

  32. Seward EM, Hopkins RB, Sauerer W, Tam S-W, Diederich F (1990) J Am Chem Soc 112: 1783

    CAS  Google Scholar 

  33. Shinkai S (1990) Bioorg. Chem Front 1: 161

    CAS  Google Scholar 

  34. Tanaka Y, Kato Y, Aoyama Y (1990) J Am Chem Soc 112: 2807

    CAS  Google Scholar 

  35. Venkata T, Rao S, Lawrence DS (1990) J Am Chem Soc 112: 614

    Google Scholar 

  36. Cramer KD, Zimmerman SC (1990) J Am Chem Soc 112: 3680

    CAS  Google Scholar 

  37. Ballester P, Mitra Tadayoni B, Branda N, Rebek J Jr (1990) J Am Chem Soc 112: 3685

    CAS  Google Scholar 

  38. Breslow R, Berger D, Huang D-L (1990) J Am Chem Soc 112: 3686

    CAS  Google Scholar 

  39. Whitlock BJ, Whitlock HW (1990) J Am Chem Soc 112: 3910

    CAS  Google Scholar 

  40. Kim YH, Webster WO (1990) J Am Chem Soc 112: 4592

    CAS  Google Scholar 

  41. Friedman AE, Chambron J-L, Sauvage J-P, Turro NJ, Barton JK (1990) J Am Chem Soc 112: 4960

    CAS  Google Scholar 

  42. Hunter CA, Sanders JKM (1990) J Am Chem Soc 112: 5525

    CAS  Google Scholar 

  43. Harmata M, Barnes CL (1990) J Am Chem Soc 112: 5655

    CAS  Google Scholar 

  44. Anderson HL, Hunter CA, Nafees N, Sanders JKM (1990) J Am Chem Soc 112: 5780

    CAS  Google Scholar 

  45. Bryant JA, Ho SP, Knobler CB, Cram DJ (1990) J Am Chem Soc 112: 5837

    CAS  Google Scholar 

  46. Diederich F (1988) Angew Chem Int Ed Engl 27: 362

    Google Scholar 

  47. Cram DJ (1986) Angew Chem Int Ed Engl 25: 1039

    Google Scholar 

  48. Hosseini MW, Blacker AJ, Lehn J-M (1990) J Am Chem Soc 112: 3896

    CAS  Google Scholar 

  49. Rebek J Jr (1987) Science 235: 1478

    CAS  Google Scholar 

  50. Chang S, Hamilton AD (1988) J Am Chem Soc 110: 1318

    CAS  Google Scholar 

  51. Jimenez L, Diederich F (1989) Tetrahedron Lett 30: 2759

    CAS  Google Scholar 

  52. Brienne M-J, Gabard J, Lehn J-M, Stibor I (1989) J Chem Soc Chem Commun 1868

    Google Scholar 

  53. Fourquay C, Lehn J-M, Levelut A-M (1990) Adv Mater 2: 254

    Google Scholar 

  54. Eschenmoser A (1988) Angew Chem Int Ed Engl 27: 5

    Google Scholar 

  55. Eschenmoser A (1976) Chem Soc Rev 5: 377

    CAS  Google Scholar 

  56. Eschenmoser A, Winter CE (1977) Science 196: 1410

    CAS  Google Scholar 

  57. Kräulter A, Platz A, Nordmann R, Hodgson KO, Dunitz JD, Eschenmoser A (1976) Helv Chim Acta 59: 924

    Google Scholar 

  58. Pflatz A, Bühler N, Neier R, Hirai K, Eschenmoser A (1977) Helv Chim Acta 60: 2653

    Google Scholar 

  59. Brown CE, Katz JJ, Shemin D (1972) Proc Natl Acad Sci USA 69: 2585

    CAS  Google Scholar 

  60. Rasetti V, Pflatz A, Kratsky C, Eschenmoser A (1972) Proc Natl Acad Sci USA 69: 16. The conclusions appear to be that: (1) The macropolycyclic precursor of vitamin B12, uroporphyrinogen III, is the thermodynamically-favored product from the self-condensation of porphobilinogen. (2) In the presence of a complexing metal, pyrrocorphin is more stable than the tautomeric porphyrinogen. The pyrrocorphin nucleus can also undergo regioselective C-protonation to generate the corrin chromophore. Thus, the arrangement of the double bonds in the ligand is a self-constituting structural element. (3) The smaller coordination hole of the corrin ligand is suited ideally to cobalt(II). The destabilising ‘ruffling’ of the corrin ligand is not necessary as it is in the case of the porphyrin. (4) The kinetic attatchment of the nucleotide chain to the propionic acid residue on ring D reflects the thermodynamic stability of the pre-reaction complex over the 7 other possible isomers. Aspects of the synthesis of vitamin B12 are recounted in

    Google Scholar 

  61. Woodward RB (1968) Pure Appl Chem 17: 760

    Google Scholar 

  62. Woodward RB (1971) Pure Appl Chem 25: 283

    CAS  Google Scholar 

  63. Woodward RB (1973) Pure Appl Chem 32: 145

    Google Scholar 

  64. Lindsey, JS (1991) Nouv J Chem 15: 153

    CAS  Google Scholar 

  65. Fraenkel-Conrat H, Williams RC (1955) Proc Natl Acad Sci USA 41: 690

    CAS  Google Scholar 

  66. Casper DLD (1980) Biophys J 32: 103

    Google Scholar 

  67. Klug A (1983) Angew Chem Int Ed Engl 22: 565

    Google Scholar 

  68. Anfinsen CB (1973) Science 181: 223

    CAS  Google Scholar 

  69. Ringsdorf H, Schlarb B, Venzmer J (1988) Angew Chem Int Ed Engl 27: 113

    Google Scholar 

  70. Miller SL, Orgel LE (1955) J Am Chem Soc 77: 351

    Google Scholar 

  71. Ferris JP (1966) J Am Chem Soc 88: 1074

    CAS  Google Scholar 

  72. Miller SL, Orgel FE (1974) The origin of life on earth. Prentice-Hall, New Jersey. For a contemporary view of the origin of life and the theory of surface metabolism, see Wächtershauser G (1988) Microbiological Rev 52: 452

    Google Scholar 

  73. Kohnke FH, Mathias JP, Stoddart JF (1989) Molecular recognition: chemical and biological problems, Roberts, SM (Ed). The Royal Society of Chemistry, Cambridge, pp 223–269

    Google Scholar 

  74. Kohnke FH, Mathias JP, Stoddart JF (1989) Angew Chem Int Ed Engl 28: 1103

    Google Scholar 

  75. See, for example Synthesis of non-natural products: challenge and reward (1986) Tetrahedron 42: 1549–1915

    Google Scholar 

  76. Stoddart JF (1988) Nature 334: 10

    Google Scholar 

  77. Lehn J-M (1990) Angew Chem Int Ed Engl 29: 1304

    Google Scholar 

  78. Seebach D (1990) Angew Chem Int Ed Engl 29: 1320

    Google Scholar 

  79. Lehn J-M, Rigault A, Siegel JS, Harrowfield J, Chevier B, Moras D (1987) Proc Natl Acad Sci USA 84: 2565

    CAS  Google Scholar 

  80. Lehn J-M, Rigault A (1988) Angew Chem Int Ed Engl 27: 1095

    Google Scholar 

  81. Constable EC, Drew MGB, Ward MD (1987) J Chem Soc Chem Commun 1600

    Google Scholar 

  82. Constable EC, Drew MGB, Ward MD (1988) J Chem Soc, Chem Commun 1450

    Google Scholar 

  83. Barley M, Constable EC, Corr SA, McQueen RCS, Nutkins JC, Ward MD, Drew MGB (1988) J Chem Soc, Dalton Trans 2655

    Google Scholar 

  84. Constable EC, Ward MD, Tocher DA (1990) J Am Chem Soc 112: 1256

    CAS  Google Scholar 

  85. Constable EC, Elder SM, Healy J, Ward MD, Tocher DA (1990) J Am Chem Soc 112: 4590

    CAS  Google Scholar 

  86. Frisch HL, Wasserman E (1961) J Am Chem Soc 83: 3789

    CAS  Google Scholar 

  87. Harrison IT, Harrison S (1967) J Am Chem Soc 89: 5723

    CAS  Google Scholar 

  88. Dietrich-Buchecker CO, Sauvage J-P (1987) Chem Rev 87: 795

    CAS  Google Scholar 

  89. Dietrich-Buchecker CO, Sauvage J-P (1988) Angew Chem Int Ed Engl 28: 89

    Google Scholar 

  90. Dietrich-Buchecker CO, Sauvage J-P, Kern J-M (1989) J Am Chem Soc 111: 7791

    CAS  Google Scholar 

  91. Dietrich-Buchecker CO, Hemmert C, Sauvage J-P (1988) New J Chem 14: 603

    Google Scholar 

  92. Dietrich-Buchecker CO, Guilhem J, Pascard C, Sauvage J-P (1990) Angew Chem Int Ed Engl 29: 1154

    Google Scholar 

  93. Dietrich-Buchecker CO, Hemmert C, Khemiss A-K, Sauvage J-P (1990) J Am Chem Soc 112: 8002

    CAS  Google Scholar 

  94. Ashton PR Goodnow TT, Kaifer AE, Reddington MV, Slawin AMZ, Spencer N, Stoddart JF, Vicent C, Williams DJ (1989) Angew Chem Int Ed Engl 28: 1396

    Google Scholar 

  95. Stoddart JF (1990) Chirality in drug design and synthesis, Brown C (ed). Academic Press, London, pp 53–81

    Google Scholar 

  96. Stoddart JF (1991) Frontiers in supramolecular organic chemistry and photochemistry, Schneider, H-J, Dürr H (Eds). VCH, Weinheim, pp 000-000

    Google Scholar 

  97. Stoddart JF (1991) Host-guest molecular interactions: from chemistry to biology, Ciba Foundation Symposium 158, Wiley, Chichester, pp 5–22

    Google Scholar 

  98. Reddington MV, Slawin AMZ, Spencer N, Stoddart JF, Vicent C, Williams DJ (1991) J Chem Soc, Chem Commun 630

    Google Scholar 

  99. Ashton PR, Brown CL, Chrystal EJT, Goodnow TT, Kaifer AE, Parry KP, Philp D, Slawin AMZ, Spencer N, Stoddart JF, Williams DJ (1991) J Chem Soc, Chem Commun 634

    Google Scholar 

  100. Anneli PL, Spencer N, Stoddart JF (1991) J Am Chem Soc 113: 5131

    Google Scholar 

  101. Anneli PL, Ashton PR, Spencer N, Slawin AMZ, Stoddart JF, Williams DJ (1991) Angew Chem Int Ed Engl 30: 1036

    Google Scholar 

  102. Ashton PR, Brown CL, Chrystal EJT, Goodnow TT, Kaifer AE, Parry KP, Slawin AMZ, Spencer N, Stoddart JF, Williams DJ (1991) Angew Chem Int Ed Engl 30: 1039

    Google Scholar 

  103. Ashton PR, Brown CL, Chrystal EJT, Parry KP, Pietraskiewicz M, Spencer N, Stoddart JF, Williams DJ (1991) Angew Chem Int Ed Engl 30: 1042

    Google Scholar 

  104. Philip D, Stoddart JF (1991) Syn Lett 445

    Google Scholar 

  105. Brown CL, Philp D, Stoddart JF (1991) Syn Lett 459

    Google Scholar 

  106. Brown CL, Philp D, Stoddart JF (1991) Syn Lett 462

    Google Scholar 

  107. Anneli PL, Ashton PR, Ballardini R, Balzarni V, Delgardo M, Gandolfi MT, Goodnow TT, Kaifer AE, Philp D, Pietraskiewicz M, Prodi L, Reddington MV, Slawin AMZ, Spencer N, Stoddart JF, Vicent C, Williams DJ (1992) J Am Chem Soc 114: 193

    Google Scholar 

  108. Schill G (1971) Catenanes, rotaxanes, and knots. Academic Press, New York

    Google Scholar 

  109. Williams RJP (1988) Nature 332: 393

    CAS  Google Scholar 

  110. Rubenstein I, Steinberg S, Tor Y, Shanzer A, Sagiv J (1988) Nature 332: 426

    Google Scholar 

  111. Arnett EM, Harvey NG, Rose PL (1989) Acc Chem Res 22: 131

    CAS  Google Scholar 

  112. Ebersole RC, Miller VA, Moran JR, Ward MD (1990) J Am Chem Soc 112: 3239

    CAS  Google Scholar 

  113. Kuhn H (1989) Thin Solid Films 178: 1

    CAS  Google Scholar 

  114. Arduengo AJ, III Moran JR, Rodriquez-Parada J, Ward MD (1990) J Am Chem Soc 112: 6153

    CAS  Google Scholar 

  115. Whitesides GM, Ferguson GS (1988) CHEMTRACTS 1: 171

    CAS  Google Scholar 

  116. Bain CD, Whitesides GM (1988) J Am Chem Soc 110: 5897

    CAS  Google Scholar 

  117. Bain CD, Whitesides GM (1988) J Am Chem Soc 110: 6560

    CAS  Google Scholar 

  118. Wilson MD, Whitesides GM (1988) J Am Chem Soc 110: 8718

    CAS  Google Scholar 

  119. Bain CD, Biebuyck H, Whitesides Gm (1989) Langmuir 5: 723

    CAS  Google Scholar 

  120. Bain CD, Whitesides GM (1989) Angew Chem Int Ed Engl 28: 506

    Google Scholar 

  121. Whitesides GM, Biebuyck H (1989) Molecular recognition: chemical and biological problems, Roberts, SM (Ed). The Royal Society of Chemistry, Cambridge pp 270–85

    Google Scholar 

  122. Bain CD, Whitesides GM (1989) J Phys Chem 93: 1670

    CAS  Google Scholar 

  123. Wilson MD, Ferguson GS, Whitesides GM (1990) J Am Chem Soc 112: 1244

    CAS  Google Scholar 

  124. Nuzzo RG, Dubois LH, Allara DL (1990) J Am Chem Soc 112: 558

    CAS  Google Scholar 

  125. Dubois LH, Zegarski BR, Nuzzo RG (1990) J Am Chem Soc 112: 570

    CAS  Google Scholar 

  126. Chidsey CED, Bertozzi CR, Putvinski TM, Mujsie AM (1990) J Am Chem Soc 112: 4301

    CAS  Google Scholar 

  127. Bain CD, Troughton EB, Tao Y-T, Evall J, Whitesides GM, Nuzzo RG (1989) J Am Chem Soc 111: 321

    CAS  Google Scholar 

  128. Rebek J Jr (1990) Angew Chem Int Ed Engl 29: 245

    Google Scholar 

  129. Tjivika T, Ballester P, Rebek J Jr (1990) J Am Chem Soc 112: 1249

    Google Scholar 

  130. Strobel SA, Dervan PB (1989) J Am Chem Soc 111: 7286

    CAS  Google Scholar 

  131. Koert U, Harding MM, Lehn J-M (1990) Nature 349: 339

    Google Scholar 

  132. Duncan MA, Rouvray DH (Dec 1989) Sci Am 261: 60

    Google Scholar 

  133. Kroto HW (1988) Science 242: 1139

    CAS  Google Scholar 

  134. Stoddart JF (1990) Angew Chem Int Ed Engl In press

    Google Scholar 

  135. Krätschmer W, Lamb LD, Fustiropoulos K, Huffman DR (1990) Nature 347: 354

    Google Scholar 

  136. Taylor R, Hare JP, Abdul-Sada AK, Kroto HW (1990) J Chem Soc, Chem Commun 1423

    Google Scholar 

  137. Ajie H, Alvarez MM, Anz SJ, Beck RD, Diederich F, Fostiropolous K, Huffman DR, Krätschmer W, Rubin Y, Sensharma D, Whetten R (1990) J Phys Chem 94: 8630

    CAS  Google Scholar 

  138. Johnson RD, Meijer G, Bethune DS (1990) J Am Chem Soc 112: 8983

    CAS  Google Scholar 

  139. Haufler RE, Conceviao J, Chibante LPF, Chai Y, Byrne NE, Flanagan S, Haley MM, O'Brien SC, Pan C, Ziao Z, Billups WE, Ciufolini MA, Hauge RH, Margrave JL, Wilson LJ, Curl RF, Smalley RE (1990) J Phys Chem 94: 8634

    CAS  Google Scholar 

  140. Feynman RP (1960) Sat Rev 432: 45

    Google Scholar 

  141. Mitchel P (1982) Cell function and differentiation, Part B. Akoyonoglou, A (Ed). AR Liss, New York pp 399–408

    Google Scholar 

  142. Mitchel P (1984) FEBS Lett 176: 287

    Google Scholar 

  143. See, for example, Carter F (1982) Molecular electronic devices. Marcel Dekker, New York

    Google Scholar 

  144. Aviram A (1988) J Am Chem Soc 110: 5687

    CAS  Google Scholar 

  145. Garnier F (1989) Angew Chem Int Ed Engl 28: 513

    Google Scholar 

  146. Häarer D (1989) Angew Chem Int Ed Engl 28: 1544

    Google Scholar 

  147. Reinhoudt DN, Südholter AC (1990) Adv Mater 2: 23

    CAS  Google Scholar 

  148. Kuhn H (1989) Molecular electronics. Hong FT (Ed). Plenum, pp 3–24

    Google Scholar 

  149. Tour JM, Wu R, Schumm JS (1990) J Am Chem Soc 112: 5662. For a thought-provoking look at artificial life and the processes that may find application in such systems, see Langton CG (Ed) (1989). Artificial Life, Addison-Wesley, USA

    CAS  Google Scholar 

  150. Kohnke FH, Stoddart JF (1989) Pure Appl Chem 61: 1581

    CAS  Google Scholar 

  151. Stoddart JF (1989) J Incl Phenom 7: 227

    CAS  Google Scholar 

  152. Kivelson S, Chapman OL (1983) Phys Rev B 28: 7236

    CAS  Google Scholar 

  153. Vögtle F (1983) Top Curr Chem 115: 157

    Google Scholar 

  154. Alder RW, Sessions RB (1985) J Chem Soc, Perkin Trans 1849

    Google Scholar 

  155. Kenny PW, Miller LL (1988) J Chem Soc, Chem Commun 84

    Google Scholar 

  156. Bailey WJ, Detter EJ, Economy J (1962) J Org Chem 27: 3479

    CAS  Google Scholar 

  157. Angus AO Jr, Johnson RP (1983) J Org Chem 48: 273

    CAS  Google Scholar 

  158. LeHollier CS, Gribble GW (1983) J Org Chem 48: 2304

    Google Scholar 

  159. Miller LL, Thomas AD, Wilkins LL, Weil DA (1986) J Chem Soc, Chem Commun 661

    Google Scholar 

  160. Thomas AD, Miller LL (1986) J Org Chem 51: 4160

    CAS  Google Scholar 

  161. Christopfel WC, Miller LL (1986) J Org Chem 51: 4169

    CAS  Google Scholar 

  162. Chiba T, Kenny PW, Miller LL (1987) J Org Chem 53: 4327

    Google Scholar 

  163. Christopfel WC, Miller LL (1987) Tetrahedron 43: 681

    Google Scholar 

  164. Block E, Putman D (1990) J Am Chem Soc 112: 4072

    CAS  Google Scholar 

  165. Blatter K, Schlüter A-D, Wegner G (1989) J Org Chem 54: 2396

    CAS  Google Scholar 

  166. Blatter K, Schlüter A-D (1989) Chem Ber 122: 1351

    CAS  Google Scholar 

  167. Blatter K, Schlüter A-D (1989) Macromolecules 22: 3506

    CAS  Google Scholar 

  168. Vogel T; Blatter K, Schlüter A-D (1989) Makromol Chem Rapid Commun 10: 427

    CAS  Google Scholar 

  169. Wager M, Wohlfarth W, Müller K (1988) Chimia 42: 377

    Google Scholar 

  170. Wasserman A (1965) Diels-Alder reactions: organic background and photochemical aspects. Elsevier, Amsterdam

    Google Scholar 

  171. Sauer J., Sustmann R (1980) Angew Chem Int Ed Engl 19: 779

    Google Scholar 

  172. Paquette LA (1984) Asymmetric Synthesis, Volume 3. Morrison JD (Series Ed). Academic Press, New York pp 455–501

    Google Scholar 

  173. Diels O, Alder K (1928) Ann Chem 460: 98

    CAS  Google Scholar 

  174. Woodward RB, Hoffmann R (1970) The conservation of orbital symmetry. Verlag-Chemie, Weinheim

    Google Scholar 

  175. Houk KN (1975) Acc Chem Res 8: 361

    CAS  Google Scholar 

  176. Masamune S, Reed LA III, Davis, JT, Choy W (1983) J Org Chem 48: 4441

    CAS  Google Scholar 

  177. Oppolzer W (1984) Angew Chem Int Ed Engl 23: 876

    Google Scholar 

  178. Evans DA, Chapman KT, Bisaha J (1984) J Am Chem Soc 106: 4261

    CAS  Google Scholar 

  179. Masamune S, Choy W, Peterson JS, Sita LR (1985) Angew Chem Int Ed Engl 24: 1

    Google Scholar 

  180. Chapuis C, Jurczak J (1987) Helv Chim Acta 70: 436

    CAS  Google Scholar 

  181. Takahashi I, Hashimoto S, Ikota N, Tomioka K, Koga K (1987) Tetrahedron Lett 28: 5687

    Google Scholar 

  182. Evans DA, Chapman KT, Bisaha J (1988) J Am Chem Soc 110: 1235

    Google Scholar 

  183. Furuta K, Miwa Y, Inagawa K, Yamamoto H (1988) J Am Chem Soc 110: 6254

    CAS  Google Scholar 

  184. Corey EJ, Inwinkelried R, Pikul S, Xiang YB (1989) J Am Chem Soc 111: 5493

    CAS  Google Scholar 

  185. Bonnesen PV, Pockett CL, Honeychuck RV, Hersh WH (1989) J Am Chem Soc 111: 6070

    CAS  Google Scholar 

  186. Rebiere F, Riant O, Kagan HB (1990) Tetrahedron Asymmetry 1: 199

    CAS  Google Scholar 

  187. Narasaka K, Inoue M, Okada N (1986) Chem Lett 1109

    Google Scholar 

  188. Narasaka K, Inoue M, Yamada Y, Nakashima M (1989) J Am Chem Soc 111: 5340

    CAS  Google Scholar 

  189. Hilvert D, Hill KW, Nared KD, Auditor M-T M (1989) J Am Chem Soc 111: 9261

    CAS  Google Scholar 

  190. Braisted AG, Schultz PG (1990) J Am Chem Soc 112: 7430

    CAS  Google Scholar 

  191. Isaacs NS (1981) Liquid-phase high-pressure chemistry. Wiley, Chichester

    Google Scholar 

  192. LeNoble WJ (1988) Organic high-pressure chemistry. Elsevier, Amsterdam

    Google Scholar 

  193. Asano T, LeNoble WJ (1978) Chem Rev 78: 407

    CAS  Google Scholar 

  194. Isaacs NS, George AV (1987) Chem Brit 23: 47

    CAS  Google Scholar 

  195. Röntgen WC (1892) Ann Phys 45: 91

    Google Scholar 

  196. Fawcett EW, Gibson RO (1934) J Chem Soc 387

    Google Scholar 

  197. Fawcett EW, Gibson RO (1934) J Chem Soc 396

    Google Scholar 

  198. See particularly, Chapter 4 in Reference 48a

    Google Scholar 

  199. Dauben WG, Kozikowski AP (1974) J Am Chem Soc 96: 3664

    CAS  Google Scholar 

  200. Dauben WG, Krabbenhoft HO (1976) J Am Chem Soc 98: 199

    Google Scholar 

  201. Dauben WG, Kessel CR, Takemura KH (1980) J Am Chem Soc 102: 6893

    CAS  Google Scholar 

  202. El Yanov BS, Klabinovski El, Gonikberg MG, Porfenova GM, Godenova LF (1971) Bull Acad Sci SSSR Ser Khim 557

    Google Scholar 

  203. Brun C, Jenner G, Deluzarch A, Libs S (1972) Bull Soc Chim Fr 2332

    Google Scholar 

  204. Jurczak J (1979) Bull Chem Soc Jpn 52: 3438

    CAS  Google Scholar 

  205. Behrend R, Meyer E, Rusche F (1905) Justus Liebigs Ann Chem 339: 1

    Google Scholar 

  206. Freeman WA, Mock WL, Shih N-Y (1981) J Am Chem Soc 103: 7367

    CAS  Google Scholar 

  207. Mock WL, Irra TA, Wepseic JP, Manimaran TL (1983) J Org Chem 48: 3619

    CAS  Google Scholar 

  208. Mock WL, Shih N-Y (1983) J Org Chem 48; 3618

    CAS  Google Scholar 

  209. Mock WL, Shih N-Y (1986) J Org Chem 51: 4440

    CAS  Google Scholar 

  210. Mock WL, Shih N-Y (1988) J Am Chem Soc 110: 4706

    CAS  Google Scholar 

  211. Mock WL, Shih N-Y (1989) J Am Chem Soc 111: 2697

    CAS  Google Scholar 

  212. Mock WL, Pierpont J (1990) J Chem Soc, Chem Commun 1509

    Google Scholar 

  213. Gutsche CD (1989) Calixarenes — monographs in supramolecular chemistry. Stoddart JF (Series Ed). The Royal Society of Chemistry, Cambridge

    Google Scholar 

  214. Andreetti CD, Calestani G, Ugozzoli F, Arduini A, Ghidini E, Pochini A, Ungaro R (1987) J Incl Phenom 5: 123

    CAS  Google Scholar 

  215. Gutsche CD, Dhawan B, Levine JA, No KC, Bauer JL (1983) Tetrahedron 39: 409

    CAS  Google Scholar 

  216. Gutsche CD (1988) Pure Appl Chem 60: 483

    CAS  Google Scholar 

  217. Gutsche CD, Alain I, Iqbal M, Mangiafico T, Nam KC, Roges J, See KA (1989) J Incl Phenom 7: 61

    CAS  Google Scholar 

  218. Gutsche CD, Iqbal M, Stewart D (1986) J Org Chem 51: 742

    CAS  Google Scholar 

  219. Shinkai S, Koreishi H, Mori S, Sune T, Manube O (1985) Chem Lett 1033

    Google Scholar 

  220. Shinkai S, Mori S, Koreishi H, Tsubaki T, Manube O (1986) J Am Chem Soc 108: 2409

    CAS  Google Scholar 

  221. Moras D, Olsen KW, Sabesan MN, Buehner M, Ford GC, Rossman MG (1975) J Biol Chem 250: 9137

    CAS  Google Scholar 

  222. Erdtman H, Högberg S, Abrahamsson S, Nilsson B (1968) Tetrahedron Lett 1679

    Google Scholar 

  223. Högberg AGS (1980) J Am Chem Soc 102: 6064

    Google Scholar 

  224. Ishikawa Y, Kunitake T, Matsuda T, Otsuka T, Shinkai S (1989) J Chem Soc, Chem Commun 736

    Google Scholar 

  225. Karbach S, Cram DJ (1982) J Am Chem Soc 104: 5826

    Google Scholar 

  226. Cram DJ, Karbach S, Kim YH, Baczynskyj L, Kalleymeyn GW (1985) J Am Chem Soc 107: 2575

    CAS  Google Scholar 

  227. Cram DJ, Karbach S, Kim HE, Knobler CB, Maverick EF, Ericson JL, Helgeson RC (1988) J Am Chem Soc 110: 2229

    CAS  Google Scholar 

  228. Cram DJ, Karbach, S, Kim YH, Baczynskyj L, Marti L, Sampson RM, Kalleymeyn GW (1988) J Am Chem Soc 110: 2554

    CAS  Google Scholar 

  229. Sherman JC, Cram DJ (1989) J Am Chem Soc 111: 4527

    CAS  Google Scholar 

  230. Tunsted T, Tucker J, Dalcanale E, Weiser J, Bryant JA, Sherman JC, Helgeson RC, Knobler CB, Cram DJ (1989) J Org Chem 54: 1305

    Google Scholar 

  231. Bryant JA, Blanda MT, Vincenti M, Cram DJ (1990) J Am Chem Soc In press

    Google Scholar 

  232. Cramer F (1951) Chem Ber 84: 851

    CAS  Google Scholar 

  233. Cramer F (1951) Chem Ber 84: 855

    CAS  Google Scholar 

  234. Cramer F (1956) Recl Trav Chim Pays-Bas 75: 891

    CAS  Google Scholar 

  235. For a collection of invited papers featuring cyclodextrin chemistry in 1989, (1989) Carb Res 192: 1–370

    Google Scholar 

  236. See, for example, St. Jacques M, Sundarajan KT, Taylor KJ, Marchessault RH (1976) J Am Chem Soc 98: 4386

    CAS  Google Scholar 

  237. Stoddart JF, Zarzycki R (1988) Recl Trav Chim Pays-Bas 107: 515

    CAS  Google Scholar 

  238. Alston DR, Ashton PR, Lilley TH, Stoddart JF, Zarzycki R, Slawin AMZ, Williams DJ (1989) Carb Res 192: 259

    CAS  Google Scholar 

  239. Komiyama M (1989) J Am Chem Soc 111: 3046

    CAS  Google Scholar 

  240. Breslow R, Kool E (1988) Tetrahedron Lett 29: 1635

    CAS  Google Scholar 

  241. Bergmann N, Schmidtchen FF (1982) Tetrahedron Lett 29: 6235

    Google Scholar 

  242. Mori M, Ito Y, Ogawa T (1989) Tetrahedron Lett 30: 1273

    CAS  Google Scholar 

  243. Mori M, Ito Y, Ogawa T (1989) Carb Res 192: 131

    CAS  Google Scholar 

  244. Takahashi T, Ogawa T (1987) Carb Res 164: 277

    CAS  Google Scholar 

  245. Ashton PR, Ellwood P, Staton I (1991) Angew Chem Int Ed Engl 30: 80

    Google Scholar 

  246. Gadele A, Defaye J (1991) Angew Chem Int Ed Engl 30: 79

    Google Scholar 

  247. Vogel P, Florey A (1974) Helv Chim Acta 57: 200

    CAS  Google Scholar 

  248. Mahaim C, Carrupt P-A, Hagenbuch J-P, Florey A, Vogel P (1980) Helv Chim Acta 62: 1149

    Google Scholar 

  249. James DE, Stille JK (1976) J Am Chem Soc 98: 1810

    CAS  Google Scholar 

  250. Kohnke FH, Stoddart JF, Slawin AMZ, Williams DJ (1988) Acta Crystallogr C44: 736

    CAS  Google Scholar 

  251. Kohnke FH, Mathias JP, Stoddart JF, Slawin AMZ, Williams DJ (1990) Acta Crystallogr C46: 1043

    CAS  Google Scholar 

  252. Vogel P (1983) in: Watson WH (ed) Stereochemistry and reactivity of systems containing π-electrons. Verlag Chemie, Deerfield Beach, Florida, pp 147–201

    Google Scholar 

  253. Tornare J-M, Vogel P (1984) J Org Chem 49: 2501

    Google Scholar 

  254. Metrel J-L, Vogel P (1985) Helv Chim Acta 68: 334

    Google Scholar 

  255. Paquette LA (1983) in: Watson WH (ed) Stereochemistry and reactivity of systems containing π-electrons. Verlag Chemie, Deerfield Beach, Florida, pp 41–73

    Google Scholar 

  256. Avenati M, Hagenbuch J-P, Mahaim C, Vogel P (1980) Tetrahedron Lett 3167

    Google Scholar 

  257. Avenati M, Carrupt P-A, Quarroz D, Vogel P (1982) Helv Chim Acta 65: 188

    CAS  Google Scholar 

  258. Mahaim C, Vogel P (1982) Helv Chim Acta 65: 866

    CAS  Google Scholar 

  259. Paquette LA, Carr RVC, Bohm MC, Gleiter R (1980) J Am Chem Soc 102: 1186

    CAS  Google Scholar 

  260. Bohm MC, Carr RVC, Gleiter R, Paquette LA (1980) J Am Chem Soc 102: 7218

    Google Scholar 

  261. Paquette LA, Carr RVC, Arnold E, Clarby J (1980) J Org Chem 45: 4907

    CAS  Google Scholar 

  262. Paquette LA, Charumilind P, Kravetz TM, Bohm MC, Gleiter R (1983) J Am Chem Soc 105: 3126

    CAS  Google Scholar 

  263. Paquette LA, Schaefer AG, Blount JF (1983) J Am Chem Soc 105: 3642

    CAS  Google Scholar 

  264. Paquette LA, Kravertz TM, Bohm MC, Gleiter R (1983) J Org Chem 48: 1250

    CAS  Google Scholar 

  265. Paquette LA, Green KE, Hsu L-Y (1984) J Org Chem 49: 3650

    CAS  Google Scholar 

  266. Paquette LA, Bellamy F, Bohm MC, Gleiter R (1980) J Org Chem 45: 4913

    CAS  Google Scholar 

  267. Paquette LA, Carr RVC, Charumilind P, Blount JF (1980) J Org Chem 45: 4922

    CAS  Google Scholar 

  268. Highly reactive dienophiles such as benzynes, dimethyl acetylenedicarboxylate, and tetracyanoethene constitute the only consistent exceptions to endo-face attack. See, for example (a) Tornare J-M, Vogel P, Pinkerton AA, Schwarzenbach D (1985) Helv Chim Acta 68: 2195

    CAS  Google Scholar 

  269. Metral J-L, Lauterwein J, Vogel P (1986) Helv Chim Acta 69: 1287

    CAS  Google Scholar 

  270. Burnier G, Schwager L, Vogel P (1986) Helv Chim Acta 69: 1310

    CAS  Google Scholar 

  271. Gleiter R, Paquette LA (1983) Acc Chem Res 16: 328

    CAS  Google Scholar 

  272. Houk KN (1983) in: Watson WH (ed) Stereochemistry and reactivity of systems containing π-electrons. Verlag Chemie, Deerfield Beach, Florida, pp 1–40

    Google Scholar 

  273. Alder K, Stein G (1931) Justus Leibigs Ann Chem 485: 211

    CAS  Google Scholar 

  274. Alder K, Stein G (1935) Justus Leibigs Ann Chem 515: 185

    CAS  Google Scholar 

  275. Schleyer PvR (1967) J Am Chem Soc 89: 701

    CAS  Google Scholar 

  276. Brown HC, Hammer WJ, Kawakami JH, Rothberg I, Van der Judt DL (1967) 89: 6381

    Google Scholar 

  277. Brown HC, Kawakami JH, Liu K-T (1973) J Am Chem Soc 95: 2209

    CAS  Google Scholar 

  278. Huisgen R, Ooms PHJ, Mingen M, Allinger NL (1980) 102: 3951

    Google Scholar 

  279. Hart H, Raja N, Meador MA, Ward DL (1983) J Org Chem 48: 4357

    CAS  Google Scholar 

  280. Hart H, Lai C-Y, Nwokogu GC, Shamouilian S (1987) Tetrahedron 43: 5203

    CAS  Google Scholar 

  281. Kohnke FH, Stoddart JF, Slawin AMZ, Williams DJ (1988) Acta Crystallogr C44: 738

    CAS  Google Scholar 

  282. Rondan NG, Paddon-Row MN, Houk KN (1981) J Am Chem Soc 103: 2436

    CAS  Google Scholar 

  283. Wipff G, Morokuma K (1980) Tetrahedron Lett 21: 4445

    CAS  Google Scholar 

  284. Burkert U (1981) Angew Chem Int Ed Engl 20: 572

    Google Scholar 

  285. Spanget-Larsen J, Gleiter R (1980) Tetrahedron Lett 21: 2435

    Google Scholar 

  286. Gleiter R, Bohm MC (1983) in: Watson WH (ed) Stereochemistry and reactivity of systems containing π-electrons. Verlag Chemie, Deerfield Beach, Florida, pp 105–146

    Google Scholar 

  287. Caramella P, Rondan NG, Paddon-Row MN, Houk KN (1981) J Am Chem Soc 103: 2438

    CAS  Google Scholar 

  288. Houk KN, Rondan NG, Brown FK, Jorgensen WL, Madura JD, Spellmeyer DC (1983) J Am Chem Soc 105: 5980

    CAS  Google Scholar 

  289. Pinkerton AA, Schwarzenbach D, Stibbard JHA, Carrupt P-A, Vogel P (1981) J Am Chem Soc 103: 2095

    CAS  Google Scholar 

  290. Hagenbuch J-P, Vogel P, Pinkerton AA, Schwarzenbach D (1981) Helv Chim Acta 64: 1818

    CAS  Google Scholar 

  291. Watson WH, Galloy J, Bartlett PD, Roof AAM (1981) J Am Chem Soc 103: 2022

    CAS  Google Scholar 

  292. Bartlett PD, Combs GL Jr, Thi Li A-X, Watson WH, Galloy J, Kimura M (1982) J Am Chem Soc 104: 3131

    CAS  Google Scholar 

  293. Pinkerton AA, Carrupt P-A, Vogel P, Boschi T, Thuy NH, Roulet R (1978) Inorg Chem Acta 28: 123

    CAS  Google Scholar 

  294. See, for example Greenberg A, Liebmann JF (1983) J Mol Struct (THEOCHEM) 103: 197

    Google Scholar 

  295. Houk KN, Paddon-Row MN, Rondan NG, Wu Y-D, Brown FK, Spellmeyer DC, Metz JT, Loncharich RJ (1986) Science (Washington DC) 231: 1109

    Google Scholar 

  296. Rondan NG, Paddon-Row MN, Caramella P, Mareda J, Mueller P, Houk KN (1982) J Am Chem Soc 104: 4974

    CAS  Google Scholar 

  297. Paddon-Row MN, Rondan NG, Houk KN (1982) J Am Chem Soc 104: 7162

    CAS  Google Scholar 

  298. Houk KN (1983) Pure Appl Chem 55: 277

    CAS  Google Scholar 

  299. Mazzocchi PH, Stahly B, Dodd J, Domelsmith LN, Rozeboom MD, Caramella P, Houk KN (1980) J Am Chem Soc 102: 6482

    CAS  Google Scholar 

  300. The non-equivalent extension of the π-orbitals has been proposed to govern the exo-face attack observed in these cases. See Burgess EM, Liotta CL (1981) J Org Chem 46: 1703

    CAS  Google Scholar 

  301. Perturbations responsible for small ground state distortions can result in much larger energy differences between competing transion states for reactions. See, for example Bürgi H-B, Dunitz JD (1983) Acc Chem Res 16: 153

    Google Scholar 

  302. Bürgi H-B, Dunitz JD (1987) J Am Chem Soc 109: 2924

    Google Scholar 

  303. Bürgi H-B, Deubler-Steudle KC (1988) J Am Chem Soc 110: 4953

    Google Scholar 

  304. Bürgi H-B, Deubler-Steudle KC (1988) J Am Chem Soc 110: 7291

    Google Scholar 

  305. Allen FH, Kirby AJ (1984) J Am Chem Soc 106: 6197

    CAS  Google Scholar 

  306. Briggs AJ, Glenn R, Jones PG, Kirby AJ, Ramaswamy P (1984) J Am Chem Soc 106: 6200

    CAS  Google Scholar 

  307. Jones PG, Kirby AJ (1984) J Am Chem Soc 106: 6207

    CAS  Google Scholar 

  308. Seebach D, Zimmermann J, Gysel U, Ziegler R, Ha T-K (1988) J Am Chem Soc 110: 4763

    CAS  Google Scholar 

  309. Seebach D, Zimmermann J (1986) Helv Chim Acta 69: 1147

    CAS  Google Scholar 

  310. Winter CE (1987) J Chem Ed 64: 587

    Google Scholar 

  311. Cieplak AS (1981) J Am Chem Soc 103: 4540

    CAS  Google Scholar 

  312. Johnson CR, Tait BD, Cieplak AS (1987) J Am Chem Soc 109: 5875

    CAS  Google Scholar 

  313. Cheung CK, Tseng LT, Lin M-H, Strivastava S, LeNoble WJ (1986) J Am Chem Soc 108: 1598

    CAS  Google Scholar 

  314. Striivastava S, LeNoble WJ (1987) J Am Chem Soc 109: 5874

    Google Scholar 

  315. For a review of stereoelectronically-assisted bond making and bond breaking in biological systems, see Gorenstein DG (1987) Chem Rev 87: 1047

    CAS  Google Scholar 

  316. Predicting stereoselectivities is still a young science. Indeed, there are several different models for deducing the most favorable mode of attack to a trigonal center. See, for example, refs. 100 and 105–107, in addition to Vogel E, Carvatti G, Franck D, Aristoff P, Moody Ch, Becher A, Felix D, Eschenmoser A (1987) Chem Lett 219

    Google Scholar 

  317. Cherest M, Felkin H, Prudent N (1968) Tetrahedron Lett 2199

    Google Scholar 

  318. Cherest M, Felkin H (1968) Tetrahedron Lett 2205

    Google Scholar 

  319. Ellwood P, Mathias JP, Stoddart JF, Kohnke FH (1988) Bull Soc Chim Belges 97: 669

    CAS  Google Scholar 

  320. See, for example, (a) Kahn SD, Pau CF, Overmann LE, Hehre WJ (1986) J Am Chem Soc 108: 7381

    CAS  Google Scholar 

  321. Kahn SD, Hehre WJ (1987) J Am Chem Soc 109: 663

    CAS  Google Scholar 

  322. Kohnke FH, Slawin AMZ, Stoddart JF, Williams DJ (1987) Angew Chem Int Ed Engl 26: 892

    Google Scholar 

  323. Carrupt P-A, Vogel P (1979) Tetrahedron Lett 4533

    Google Scholar 

  324. Bessiere Y, Vogel P (1980) Helv Chim Acta 63: 232

    CAS  Google Scholar 

  325. Pilet O, Vogel P (1981) Helv Chim Acta 64: 2563

    CAS  Google Scholar 

  326. Pilet O, Birbaum J-L, Vogel P (1983) Helv Chim Acta 66: 19

    CAS  Google Scholar 

  327. Tornare J-M, Vogel P (1985) Helv Chim Acta 68: 1069

    CAS  Google Scholar 

  328. Luo J, Hart H (1987) J Org Chem 52: 4833

    CAS  Google Scholar 

  329. Wittig G, Reuther W (1972) Ann Chem 761: 20

    CAS  Google Scholar 

  330. Takeshita H, Mori A, Sano S, Fujise Y (1975) 48: 1661

    Google Scholar 

  331. Irngartinger H, Deuter J, Charumilind P, Paquette LA (1989) J Am Chem Soc 111:9236

    CAS  Google Scholar 

  332. Carrupt P-A, Vogel P (1985) J Mol Struct (THEOCHEM) 124: 9

    Google Scholar 

  333. Elmosalamy MAF, Moody GJ, Thomas JDR, Kohnke FH, Stoddart (1989) Anal Proc 26: 12

    CAS  Google Scholar 

  334. Gould RO, Gray AM, Taylor P, Walkinshaw MD (1985) J Am Chem Soc 107: 5921

    CAS  Google Scholar 

  335. Burley SK, Petsko GA (1985) Science (Washington DC) 229: 23

    CAS  Google Scholar 

  336. Burley SK, Petsko GA (1986) FEBS Lett 203: 139

    CAS  Google Scholar 

  337. Burley SK, Petsko GA (1988) Adv Prot Chem 39: 125

    CAS  Google Scholar 

  338. Jorgensen WL, Severance M (1990) J Am Chem Soc 113: 4768

    Google Scholar 

  339. Nishio M, Hirota M (1989) Tetrahedron 45: 7201

    CAS  Google Scholar 

  340. Alder RW, Sessions RB (1985) J Chem Soc Perkin Trans 2: 1849

    Google Scholar 

  341. Ashton PR, Isaacs NS, Kohnke FH, Slawin AMZ, Spencer C, Stoddart JF, Williams DJ (1988) Angew Chem Int Ed Engl 27: 966

    Google Scholar 

  342. Milgrom L (1988) New Scientist 3 Dec 61

    Google Scholar 

  343. Stoddart JF (1988) Chem Brit 24: 1203

    CAS  Google Scholar 

  344. Balaban AT (1980) Pure Appl Chem 52: 1409

    CAS  Google Scholar 

  345. Vögtle F (1983) Topp Curr Chem 115: 157

    Google Scholar 

  346. Hart H, Nwokogu GC (1981) J Org Chem 46: 1251

    CAS  Google Scholar 

  347. Xing YD, Huang NZ (1982) J Org Chem 47: 140

    CAS  Google Scholar 

  348. Wong HNC, Man Y-M, Mak TCW (1987) Tetrahedron Lett 28: 6359

    CAS  Google Scholar 

  349. Wong HNC (1989) Acc Chem Res 22: 145

    CAS  Google Scholar 

  350. Pons J-M, Santelli M (1988) Tetrahedron 44: 4295

    CAS  Google Scholar 

  351. Rabideau PW (ed) (1989) Conformational analysis of cyclohexenes, and cyclohexadienes. Verlag-Chemie, New York

    Google Scholar 

  352. Luo J, Hart H (1988) J Org Chem 53: 1341

    CAS  Google Scholar 

  353. Luo J, Hart H (1989) J Org Chem 54: 1762

    CAS  Google Scholar 

  354. For a discussion of isobenzofurans and their reactions, see, for example (a) Fieser LF, Haddadin MJ (1964) J Am Chem Soc 86: 2081

    CAS  Google Scholar 

  355. Fieser LF, Haddadin MJ (1965) Can J Chem 43: 1599

    CAS  Google Scholar 

  356. Friederichsen W (1980) Adv Het Chem 26: 135

    Google Scholar 

  357. Rodrigo R (1988) Tetrahedron 44: 2093

    CAS  Google Scholar 

  358. Ashton PR, Isaacs NS, Kohnke FH, Mathias JP, Stoddart JF (1989) Angew Chem Int Ed Engl 28: 1258

    Google Scholar 

  359. Several classical valence isomers of the bisisobenzofuran 54 can be drawn, however, this classical biradical representation serves to illustrate both the bisdiene and radicalic behaviour demonstrated by this species.

    Google Scholar 

  360. Kohnke FH, Mathias JP, Stoddart JF, Slawin AMZ, Watts DJ, Williams DJ (1990) Acta Crystallogr C46: 1046

    CAS  Google Scholar 

  361. Kohnke FH, Mathias JP, Stoddart JF, Slawin AMZ, Watts DJ, Williams DJ (1990) Acta Crystallogr C46: 1049

    CAS  Google Scholar 

  362. Florey A, Vogel P (1975) Helv Chim Acta 58: 1488

    CAS  Google Scholar 

  363. Balaban AT (1988) Rev Roum de Chem 33: 699

    CAS  Google Scholar 

  364. Clar E (1942) Chem Ber 75: 1330

    Google Scholar 

  365. Jackson LM, Sondheimer F, Amiel Y, Ben-Efraim DA, Gaoni Y, Wolosky R, Bothner-By AA (1962) J Am Chem Soc 82: 4307

    Google Scholar 

  366. Clar E (1972) The aromatic sextet. Wiley, London

    Google Scholar 

  367. This reaction has previously been reported to yield only one, unidentified, isomer. See Hart H, Shamouilian S (1981) J Org Chem 46: 4874

    CAS  Google Scholar 

  368. Mathias JP, Slawin AMZ, Stoddart JF, Williams DJ Unpublished results

    Google Scholar 

  369. Ashton PR, Isaacs NS, Kohnke FH, D'Alcontres GS, Stoddart JF (1989) Angew Chem Int Ed Engl 28: 1261

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this chapter

Cite this chapter

Kohnke, F.H., Mathias, J.P., Stoddart, J.F. (1993). Substrate-directed synthesis: The rapid assembly of novel macropolycyclic structures via stereoregular diels-alder oligomerizations. In: Supramolecular Chemistry I — Directed Synthesis and Molecular Recognition. Topics in Current Chemistry, vol 165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0111280

Download citation

  • DOI: https://doi.org/10.1007/BFb0111280

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56280-1

  • Online ISBN: 978-3-540-47504-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics