Skip to main content

Stress-strain behaviour of model networks in uniaxial tension and compression

  • Permanent Networks
  • Conference paper
  • First Online:
Permanent and Transient Networks

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 75))

Abstract

Elasticity measurements performed on well-defined poly(dimethylsiloxane) networks (PDMS) reveal that there is a direct proportionality between the small-strain modulus, G, and the chemical network density, vch, only at high network densities, whereas G is quite constant and in the order of the plateau modulus, G oN , at low network densities. This indicates that topological interactions, e. g. entanglements, contribute to the modulus in a certain range of network densities.

PDMS networks haying well-defined topologies were prepared by endlinking fractionated PDMS chains (¯ M n ranging from 2000 to 62000 g mol−1) with a pentafunctional cyclic siloxane. Generally, the sol fraction of the samples was below 1.5% suggesting that the crosslinking reaction was quite complete.

Stress-strain isotherms in uniaxial tension and compression were measured at 333 K for these networks utilizing only one specimen in the same apparatus for the whole deformation range covered. At small and medium deformations, the reduced stress increases monotonically as a function of reciprocal elongation when going from extension to compression. A maximum in the Mooney-Rivlin plot may occur, if at all, in the compression range at λ ≦ 0.7, in qualitative accord with some theoretical approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Flory PJ (1977) J Chem Phys 66:5720

    Article  CAS  Google Scholar 

  2. Langley NR (1968) Macromol 1:348

    Article  CAS  Google Scholar 

  3. Dossin LM, Graessley WW (1979) Macromol 12:123; Graessley WW (1982) Adv Polym Sci 47:67

    Article  CAS  Google Scholar 

  4. Heinrich G, Straube E, Helmis G (1979) Plaste u Kautschuk 26:561

    CAS  Google Scholar 

  5. Flory PJ, Erman B (1982) Macromol 15:800, 806

    Article  CAS  Google Scholar 

  6. Edwards SF (1977) Brit Polym J 9:140

    Article  CAS  Google Scholar 

  7. Marrucci G (1981) Macromol 14:434

    Article  CAS  Google Scholar 

  8. Schwarz J (1981) Polym Bull 5:151, 478

    CAS  Google Scholar 

  9. Kilian H-G (1983) Kautsch Gummi Kunstst 36:959; Kilian H-G Enderle HF, Unseld K (1986) CoU & Polym Sci 264:866

    CAS  Google Scholar 

  10. Treloar LRG (ed) (1975) The Physics of Rubber Elasticity, University Press, Oxford

    Google Scholar 

  11. Dusek K, Prins W (1969) Adv Polym Sci 6:1

    Article  CAS  Google Scholar 

  12. Kuhn W (1934) Kolloid-Z 68:2; Kuhn W (1936) ibid 76:258

    Article  CAS  Google Scholar 

  13. Hermans JJ (1947) Trans Farad Soc 43:591

    Article  CAS  Google Scholar 

  14. Flory PJ (1950) J Chem Phys 18:108

    Article  CAS  Google Scholar 

  15. Wall FT, Flory PJ (1951) J Chem Phys 19:1435

    Article  CAS  Google Scholar 

  16. Duiser JA, Staverman AJ (1965) In: Prins JA (ed) Physics of Non-Crystalline Solids, North-Holland Pub Co, Amsterdam, p 376

    Google Scholar 

  17. Graessley WW (1975) Macromol 8:186

    Article  CAS  Google Scholar 

  18. Edwards SF (1971) In: Chompff AJ, Newman S (eds) Polymer Networks, Structure and Mechanical Properties, Plenum Press, New York, p 83

    Google Scholar 

  19. Rivlin RS (1947) J Appl Phys 18:444

    Article  Google Scholar 

  20. Mooney M (1940) J Appl Phys 11:582; Mooney M (1948) ibid 19:434

    Article  Google Scholar 

  21. Ferry JD (ed) (1980) Viscoelastic Properties of Polymers, 3rd ed, Wiley, New York

    Google Scholar 

  22. Ronca G, Allegra G (1975) J Chem Phys 63:4990

    Article  CAS  Google Scholar 

  23. Mark JE, Sullivan JL (1977) J Chem Phys 66:1006

    Article  CAS  Google Scholar 

  24. Llorente MA, Mark JE (1980) Macromol 13:681

    Article  CAS  Google Scholar 

  25. Kosfeld R, Heß M, Hansen D (1980) Polym Bull 3:603

    Article  CAS  Google Scholar 

  26. Valles EM, Macosko CW (1979) Macromol 12:673

    Article  CAS  Google Scholar 

  27. Macosko CW, Benjamin GS (1981) Pure Appl Chem 53:1505

    CAS  Google Scholar 

  28. Granick S, Pedersen S, Nelb GW, Ferry JD, Macosko CW (1981) Polym Sci Polym Phys Ed 19:1745

    Article  CAS  Google Scholar 

  29. Meyers KO, Bye ML, Merrill EW (1980) Macromol 13:1045

    Article  CAS  Google Scholar 

  30. Gleim W, Oppermann W, Rehage G (1986) Makromol Chem 187:1273

    Article  CAS  Google Scholar 

  31. Oppermann W, Rehage G (1981) CoU & Polym Sci 259:1177

    Article  CAS  Google Scholar 

  32. Oppermann W, Rose S, Rehage G (1985) Brit Polym J 17:175

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Oppermann, W., Rennar, N. (1987). Stress-strain behaviour of model networks in uniaxial tension and compression. In: Permanent and Transient Networks. Progress in Colloid & Polymer Science, vol 75. Steinkopff. https://doi.org/10.1007/BFb0109408

Download citation

  • DOI: https://doi.org/10.1007/BFb0109408

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-0725-8

  • Online ISBN: 978-3-7985-1696-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics