Skip to main content

Vacuum tunnelling microscopy—A status report

  • Tunneling
  • Chapter
  • First Online:
Festkörperprobleme 25

Part of the book series: Advances in Solid State Physics ((ASSP,volume 25))

Abstract

The scanning vacuum tunnelling microscope is a device capable of providing information on an atomic scale about the charge distribution of a conducting surface at the Fermi energy. Simple WKB theory explains the I-V-s tunnelling characteristics quite well, including the origin of anomalously low values for the height of the potential barrier, ØБ. Limiting factors in the resolution are the lateral spread of the current and the rapid decay of the structural information contained in high k Fourier components of the surface wavefunctions. Both effects produce a fall-off in resolution of the form ~(r+s)1/2 1/4b and appear to be similar in magnitude. The best lateral resolution achieved to date is ≈4 Å, for separation s≈4 Å, tip radius r≈5 Å, and barrier height φb≈4 eV. The tunnel current IT is proportional to the surface local density of states at the position of the centre of the probe tip, which is proportional to the charge density. The relation between the tunnel current and the actual atomic structure is less well-defined, and some care is necessary in the detailed interpretation of STM images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Appl. Phys. Lett. 40, 178 (1982).

    Article  ADS  Google Scholar 

  2. G. Binnig and H. Rohrer, Helvetica Physica Acta 55, 726 (1982); Physica 127 B, 37 (1984).

    Google Scholar 

  3. M. D. Pashley, J. B. Pethica, and J. Coombs, Proc. ECOSS VI, Surf. Sci. 152/153 Part I, 27 (1985).

    Article  Google Scholar 

  4. J. G. Simmons, J. Appl. Phys. 34, 1793 (1963).

    Article  ADS  Google Scholar 

  5. Obtained from further analysis of the data in [3].

    Article  Google Scholar 

  6. M. C. Payne and J. C. Inkson, Surf. Sci. in press (1985).

    Google Scholar 

  7. N. D. Lang and W. Kohn, Phys. Rev. B 1, 4555 (1970); ibid. N. D. Lang and W. Kohn, Phys. Rev. B 3, 1215 (1971).

    Article  ADS  Google Scholar 

  8. G. Binnig, N. Garcia, H. Rohrer, J. M. Soler, and F. Flores, Phys. Rev. B 30, 4816 (1984).

    Article  ADS  Google Scholar 

  9. A hemispherical tip is the simplest to deal with algebraically. However, the argument extends to more complex shapes.

    Google Scholar 

  10. J. Tersoff and D. R. Hamann, Phys. Rev. Lett. 50, 1998 (1983); Phys. Rev. B 31, 805 (1985).

    Article  ADS  Google Scholar 

  11. N. Garcia, C. Ocal, and F. Flores, Phys. Rev. Lett. 50, 2002 (1984).

    Article  ADS  Google Scholar 

  12. E. Stoll, A. Baratoff, A. Selloni, and P. Carnevale, J. Phys. C: Solid State Physics 17, 3073 (1984).

    Article  ADS  Google Scholar 

  13. N. Garcia and F. Flores, Physica 127 B, 137 (1984).

    Google Scholar 

  14. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Surf. Sci. 131, L379 (1983).

    Article  Google Scholar 

  15. A. Baratoff, Physica 127 B, 143 (1984).

    Google Scholar 

  16. J. C. Campuzano, M. S. Foster, G. Jennings, R. F. Willis, and W. Unertl, Phys. Rev. Lett. in press (1985).

    Google Scholar 

  17. N. Esbjerg and J. K. Novskov, Phys. Rev. Lett. 45, 807 (1980).

    Article  ADS  Google Scholar 

  18. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. 50, 120 (1983).

    Article  ADS  Google Scholar 

  19. S. A. Elrod, A. L. de Lozanne, and C. F. Quate, Appl. Phys. Lett. in press (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. Grosse

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Willis, R.F., Payne, M.C., Pethica, J.B., Pashley, M.D., Coombs, J.H. (1985). Vacuum tunnelling microscopy—A status report. In: Grosse, P. (eds) Festkörperprobleme 25. Advances in Solid State Physics, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0108207

Download citation

  • DOI: https://doi.org/10.1007/BFb0108207

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08031-0

  • Online ISBN: 978-3-540-75361-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics