Skip to main content

Lattice distortion, elastic interaction, and phase transitions of hydrogen in metals

  • Chapter
  • First Online:
Advances in Solid State Physics

Part of the book series: Advances in Solid State Physics ((ASSP,volume 24))

Abstract

Hydrogen dissolves in many metals and occupies interstitial sites, in the host lattice. Lattice distortions expand the metal lattice and give, rise to an elastic interaction between hydrogen. This elastic interaction is the relevant long range interaction for the phase transition α−ά of hydrogen in niobium. The α and ά phase show a close analogy to the gas and liquid phase of, a real fluid. There is, however, an important difference which is also due to the elastic interaction. The coherent phase transition α−ά is accompanied by large coherency stresses which give rise to macroscopic and microscopic density modes.

X-ray and neutron scattering methods were used to get information on lattice distortions, elastic interaction, and the hydrogen density modes.

After an introduction to the scattering, methods and outline of the physical concepts for phase transitions of hydrogen in metals recent experimental results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a review see: Hydrogen in Metals, Topics in Applied Physics, Vol. 28 and 29, Ed.: G. Alefeld, J. Völkl, Springer Verlag Berlin, Heidelberg, New York 1978.

    Google Scholar 

  2. H. Peisl in [1], I, p. 53.

    Google Scholar 

  3. G. Alefeld, phys. stat. sol. 32, 67 (1969).

    Article  ADS  Google Scholar 

  4. H. Wagner and H. Horner, Advances in Physics 23, 587 (1974).

    Article  ADS  Google Scholar 

  5. H. Wagner in [1] I, p. 5.

    Google Scholar 

  6. Ch. A. Wert in [1]. II, p. 305.

    Google Scholar 

  7. W. Fenzl, Doctoral Thesis, University of Munich 1983.

    Google Scholar 

  8. For a review see e.g.: H. Peisl, J. de Physique 37, C7–47 (1967), P. Ehrhart, J. of Nucl. Mat. 69 & 70, 200 (1978).

    Google Scholar 

  9. E. Burkel, Doctoral Thesis, University of Munich 1982.

    Google Scholar 

  10. H. Pfeiffer and H. Peisl, Physics Letters 60A, 363 (1977).

    ADS  Google Scholar 

  11. F. M. Mazzolai and H. K. Birnbaum, Proc. 7th Int. Conf. of Int. Friction and Ultrasonic Attenuation in Solids, Lausanne 1981.

    Google Scholar 

  12. H. Trinkaus, phys. stat. sol., (b) 51, 307 (1972).

    Article  ADS  Google Scholar 

  13. H. Metzger, J. Peisl and J. Wanagel, J. Phys. F.: Metal Phys. 6, 2195 (1976).

    Article  ADS  Google Scholar 

  14. H. D. Carstanjen and R. Sizmann, Physics Letters 40A, 93 (1972).

    ADS  Google Scholar 

  15. E. Burkel, H. Dosch and J. Peisl, Z. Phys. B, Condensed Matter 53, 33 (1983).

    Article  ADS  Google Scholar 

  16. H. Dosch, Diploma Thesis, University of Munich 1980.

    Google Scholar 

  17. H. Dosch, unpublished results.

    Google Scholar 

  18. H. Metzger, H. Behr and J. Peisl, Z. Phys. B, Condensed Matter 46, 295 (1982).

    Article  ADS  Google Scholar 

  19. H. Metzger, H. Behr and J. Peisl, Sol. State Comm. 40, 789 (1981).

    Article  ADS  Google Scholar 

  20. U. Schubert, H. Metzger and J. Peisl, J., Phys. F.: Metal Phys. in press.

    Google Scholar 

  21. U. Schubert, H. Metzger, and J. Peisl, to be published.

    Google Scholar 

  22. U. Schubert, H. Dosch, H. Metzger, and J. Peisl, J. Phys. F: Metal Phys., in press.

    Google Scholar 

  23. G. Pfeiffer and H. Wipf, J. Phys. F: Metal Phys. 6, 167 (1976).

    Article  ADS  Google Scholar 

  24. H. Zabel and J. Peisl, J. Phys. F: Metal Phys. 9, 1461 (1979).

    Article  ADS  Google Scholar 

  25. R. Fowler and E. A. Guggenheim., Statistical Thermodynamics, Cambridge University Press, Cambridge 1960.

    Google Scholar 

  26. G. Alefeld, phys. stat. sol. 32, 67 (1969).

    Article  ADS  Google Scholar 

  27. H. Horner and H. Wagner, J. Phys. C: Solid State Phys. 7, 3305 (1974).

    Article  ADS  Google Scholar 

  28. M. Futran, S. G. Coasts, C. K. Hall, and D. O., Welch, J. Chem. Phys. 77, 6223 (1982).

    Article  ADS  Google Scholar 

  29. H. Zabel, Doctoral Thesis, University of Munich 1978.

    Google Scholar 

  30. H. Zabel and J. Peisl, Acta Met. 28, 589 (1980).

    Article  Google Scholar 

  31. H. Behr, unpublished results.

    Google Scholar 

  32. H. Zabel and J. Peisl, Phys. Rev. Lett. 42, 511 (1979).

    Article  ADS  Google Scholar 

  33. J. Tretkowski, J. Völkl, and G. Alefeld, Z. Phys. B: Condensed Matter 28, 259 (1977).

    ADS  Google Scholar 

  34. W. Münzing, Doctoral Thesis, Technical University of Munich (1978).

    Google Scholar 

  35. E., Burkel, W. Fenzl, and J. Peisl, to be published.

    Google Scholar 

  36. S. Dietrich and W. Fenzl, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. Grosse

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Peisl, J. (1984). Lattice distortion, elastic interaction, and phase transitions of hydrogen in metals. In: Grosse, P. (eds) Advances in Solid State Physics. Advances in Solid State Physics, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107445

Download citation

  • DOI: https://doi.org/10.1007/BFb0107445

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08030-3

  • Online ISBN: 978-3-540-75374-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics