Skip to main content

Electron transfer in transition metal-pteridine systems

  • Chapter
  • First Online:
Less Common Metals in Proteins and Nucleic Acid Probes

Part of the book series: Structure and Bonding ((STRUCTURE,volume 92))

Abstract

The combination of a pterin and a transition metal in many enzymes is the motivation for exploring the chemistry of pteridine complexes in detail. Unlike other biological ligands for essential transition metals, pterin is unique in displaying multi-electron redox reactivity, an ability that resembles the redox capabilities of transition metals. It is perhaps because these two partners, metal and pterin, have this chemical similarity that their compounds defy traditional categorization by formal oxidation number. The result challenges the chemist to formulate fresh interpretations of these deceptively ordinary complexes. This review concerns reports of metal-pterin complexes that appeared from the early 1980s through 1996. In a few cases older literature is briefly mentioned to build a context for the newer work. The review comprises four sections. Section 1 introduces the pteridine family and its important contributions to biochemistry. Section 2 is devoted to studies of molybdenum (6+) complexes reacted with reduced pterins. Section 3 describes redox interactions between reduced pterins and the first row metals copper and iron. Finally, Section 4 turns to a discussion of the electronic interactions in flavin complexes of various metals. An Epilogue closes the review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown DJ (1988) Fused pyrimidines, pt 3. pteridines. Wiley, New York

    Google Scholar 

  2. Hurst DT (1980) Chemistry and biochemistry of pyrimidines, purines and pteridines. Wiley, New York, p 64

    Google Scholar 

  3. Pfleiderer W (1992), J Heterocycl Chem 29: 583

    Article  CAS  Google Scholar 

  4. The name pyrimido[4,5-b]pyrazine was adopted by Chemical Abstracts for a period of time and sometimes appears in older literature

    Google Scholar 

  5. Albert A (1976) Adv Heterocycl Chem 20: 117

    Article  CAS  Google Scholar 

  6. Bieri JH, Viscontini M (1977) Helv Chim Acta 60: 447

    Article  CAS  Google Scholar 

  7. Bieri JH, Viscontini M (1977) Helv Chim Acta 60: 1926

    Article  CAS  Google Scholar 

  8. Armarego WLF, Waring P (1980) J Chem Res 318

    Google Scholar 

  9. Armarego WLF, Schou H (1977) J Chem Soc Perkin Trans 1: 2529

    Article  Google Scholar 

  10. Ganguly AN, Sengupta PK, Bieri JH, Viscontini M (1980) Helv Chim Acta 63: 395

    Article  CAS  Google Scholar 

  11. Weber R, Viscontini M (1975) Helv Chim Acta 58: 1772

    Article  CAS  Google Scholar 

  12. Benkovic SJ (1980) Annu Rev Biochem 49: 227

    Article  PubMed  CAS  Google Scholar 

  13. Williams TC, Storm CB (1985) Biochem 24: 458

    Article  CAS  Google Scholar 

  14. Dryhurst G (1982) Electrochemistry of reduced pterin cofactors. In: Kadish KM (ed) Electrochemical and spectrochemical studies of biological redox components. American Chemical Society, Washington p 457

    Google Scholar 

  15. Dryhurst G (1977) In: Electrochemistry of biological molecules. Academic Press, New York, p 320

    Google Scholar 

  16. Pfleiderer W, Gottlieb R (1985) Electrolysis of pteridines. In: Wachter H, Curtius H, Pfleiderer W (eds) Biochemical and clinical aspects of pteridines. DeGruyter, Berlin, p 3

    Google Scholar 

  17. Kaufman S (1961) J Biol Chem 236: 804

    PubMed  CAS  Google Scholar 

  18. Lazarus RA, DeBrosse CW, Benkovic SJ (1982) J Am Chem Soc 104: 6871

    Article  CAS  Google Scholar 

  19. Benkovic SJ, Sammons D, Armarego WLF, Waring P, Inners R (1985) J Am Chem Soc 107: 3706

    Article  CAS  Google Scholar 

  20. Archer MC, Scrimgeour KG (1970) Can J Biochem 48: 278

    Article  PubMed  CAS  Google Scholar 

  21. Bailey SW, Ayling JE (1983) Biochemistry 1790

    Google Scholar 

  22. Blair JA, Pearson AJ (1975) J Chem Soc Perkin Trans 2

    Google Scholar 

  23. Kappock TJ, Caradonna JP (1996) Chem Rev 96: 2659

    Article  PubMed  CAS  Google Scholar 

  24. For example, common artificial cofactors are 6,7-dimethyl tetrahydropterin and 6-methyltetrahydropterin

    Google Scholar 

  25. Massey V, Palmer G, Ballou D (1971) On the reaction of flavins and flavoproteins with molecular oxygen. In: Kamin H (ed) Flavins and flavoproteins. University Park Press, Baltimore, p 349

    Google Scholar 

  26. Mager HIX, Addink R, Berends W (1967) Recueil 86: 833

    CAS  Google Scholar 

  27. Pember SO, Villafranca JJ, Benkovic SJ (1986) Biochemistry 25: 6611

    Article  PubMed  CAS  Google Scholar 

  28. Pember SO, Benkovic SJ, Villafranca JJ, Pasenkiewicz-Gierula M, Antholine WE (1986) Biochemistry 26: 4477

    Article  Google Scholar 

  29. Blackburn N, Strange RW, Carr RT, Benkovic SJ (1992) Biochemistry 313: 5298

    Article  Google Scholar 

  30. McCracken J, Pember SO, Benkovic SJ, Villafranca JJ, Miller RJ, Peisach J, (1988) J Am Chem Soc 110: 1068

    Article  Google Scholar 

  31. Carr RT, Benkovic SJ (1993) Biochemistry 32: 14,132

    Article  CAS  Google Scholar 

  32. Johnson JL, Hainline BE, Rajagopalan KV (1980) J Biol Chem 255: 1783

    PubMed  CAS  Google Scholar 

  33. Pilato RS, Stiefel EI (1993) Catalysis by molybdenum-cofactor enzymes. In: Reedjik J (ed) Bioinorganic catalysis. Dekker, New York, p 131

    Google Scholar 

  34. Enemark JH, Young CG (1993) Bioinorganic chemistry of pterin-containing molybdenum and tungsten enzymes. In: Advances in inorganic chemistry, vol 40, p 1

    Google Scholar 

  35. Hille R (1996) Chem Rev 96: 2757

    Article  PubMed  CAS  Google Scholar 

  36. Rajagopalan KV (1991) Novel aspects of the biochemistry of the molybdenum cofactor. In: Meister A (ed) Advances in enzymology and related areas of molecular biology, vol 64. Wiley, New York, p 215

    Google Scholar 

  37. Johnson JL, Hainline BE, Rajagopalan KV, Arison BH (1984) J Biol Chem 259: 5414

    PubMed  CAS  Google Scholar 

  38. Johnson JL, Rajagopalan KV (1982) Proc Natl Acad Sci USA 79: 6856

    Article  PubMed  CAS  Google Scholar 

  39. Kramer SP, Johnson JL, Ribeiro AA, Millington DS, Rajagopalan KV (1987) J Biol Chem 262: 16,357

    CAS  Google Scholar 

  40. Wuebbens MW, Rajagopalan KV (1993) J Biol Chem 268: 13,493

    CAS  Google Scholar 

  41. Johnson JL, Wuebbens MW, Rajagopalan KV (1989) J Biol Chem 264: 13,440

    CAS  Google Scholar 

  42. Johnson ME, Rajagopalan KV (1987) J Bacteriol 169: 110

    PubMed  CAS  Google Scholar 

  43. Boyington JC, Gladyshev VN, Khangulov SV, Stadtman TC, Sun PD (1997) E. coli formate dehydrogenase. Science 275: 1305

    Article  PubMed  CAS  Google Scholar 

  44. Romao MJ, Archer M, Moura I, Moura JJG, LeGall J, Engh R, Schneider M, Hof P, Huber R (1995) Desulfovibrio gigas aldehyde oxidoreductase. Science 270: 1170

    Article  PubMed  CAS  Google Scholar 

  45. Huber R, Hof P, Duarte RO, Moura JJG, Moura I, Liu M-Y, LeGall J, Hille R, Archer M, Romao MJ (1996) Proc Natl Acad Sci USA 93: 8846

    Article  PubMed  CAS  Google Scholar 

  46. Schindelin H, Kisker C, Hilton J, Rajagopalan KV, Rees DC (1996) Rhodobacter sphaeroides DMSO reductase. Science 272: 1615

    Article  PubMed  CAS  Google Scholar 

  47. Schindelin H, Kisker C, Rees DC Chicken liver sulfite oxidase (personal communication)

    Google Scholar 

  48. Schultz B, Hille R, Holm RH (1995) J Am Chem Soc 117: 827

    Article  CAS  Google Scholar 

  49. Hille R, Sprecher H (1987) J Biol Chem 262: 10,914

    CAS  Google Scholar 

  50. Hille R, Massey V (1982) J Biol Chem 257: 8898

    PubMed  CAS  Google Scholar 

  51. Dolphin D (1980) Model studies and the biochemical function of coenzymes. In: Biomimetic chemistry. American Chemical Society, Washington, DC, p 65

    Google Scholar 

  52. Bruice TC (1980) Acc Chem Res 13: 256

    Article  CAS  Google Scholar 

  53. Blakely RL, Benkovic SJ (1984) Folates and pterins. Wiley, New York

    Google Scholar 

  54. Vonderschmitt DJ, Scrimgeour KG (1967) Biochem Biophys Res Comm 28: 302

    Article  PubMed  CAS  Google Scholar 

  55. Burgmayer SJN, Baruch A, Kerr K, Yoon K (1989) J Am Chem Soc 111: 4982

    Article  CAS  Google Scholar 

  56. Burgmayer SJN, Stiefel EI (1986) J Am Chem Soc 108: 8310

    Article  CAS  Google Scholar 

  57. Perkinson J, Brodie S, Yoon K, Mosny K, Carroll PJ, Burgmayer SJN (1991) Inorg Chem 30: 719

    Article  CAS  Google Scholar 

  58. Bessenmacher C, Vogler C, Kaim W (1989) Inorg Chem 28: 4645

    Article  Google Scholar 

  59. Kohzuma T, Masuda H, Yamauchi O (1989) J Am Chem Soc 111: 3431

    Article  CAS  Google Scholar 

  60. Kohzuma T, Odani A, Morita Y, Takani M, Yamauchi O (1988) Inorg Chem 27: 3854

    Article  CAS  Google Scholar 

  61. Mitsumi M, Toyoda J, Nakasuji K (1995) Inorg Chem 34: 3367

    Article  CAS  Google Scholar 

  62. Hueso-Urena F, Jimenez-Pulido SB, Moreno Carretero MN, Quiros-Olozabal M, Salas-Peregrin JM (1997) Polyhedron 16: 607

    Article  CAS  Google Scholar 

  63. Burgmayer SJN, Arkin MR, Bostick L, Dempster S, Everett KM, Layton HL, Paul KE, Rogge C, Rheingold AL (1995) J Am Chem Soc 117: 5812

    Article  CAS  Google Scholar 

  64. Wieghardt K, Hahn M, Swiridoff W, Weiss J (1984) Inorg Chem 23: 94

    Article  CAS  Google Scholar 

  65. Fischer B, Strahle J, Viscontini M (1991) Helv Chim Acta 74: 1544

    Article  CAS  Google Scholar 

  66. Kaufmann HL (1977) PhD dissertation. Bryn Mawr College, Bryn Mawr, PA

    Google Scholar 

  67. Gardlik S, Rajagopalan KV (1990) J Biol Chem 265: 13,047

    CAS  Google Scholar 

  68. Gardlik S, Barber MJ, Rajagopalan KV (1987) Arch Biochem Biophys 259: 363

    Article  PubMed  CAS  Google Scholar 

  69. Kaufman S (1961) J Biol Chem 236: 804

    PubMed  CAS  Google Scholar 

  70. Fischer B, Schmalle H, Dubler E, Schafer A, Viscontini M (1995) Inorg Chem 34: 5726

    Article  CAS  Google Scholar 

  71. Kaufmann HL, Burgmayer SJN (submitted to Inorg Chem)

    Google Scholar 

  72. Holm RH (1990) Coord Chem Rev 100: 183

    Article  CAS  Google Scholar 

  73. Holm RH (1987) Chem Rev 87: 1401

    Article  CAS  Google Scholar 

  74. Stiefel EI (1977) The coordination and bioinorganic chemistry of molybdenum. In: Lippard SJ (ed) Progess in inorganic chemistry, vol 22. Wiley, New York, p 3

    Google Scholar 

  75. Liu W, Thorp HH (1993) Inorg Chem 32: 4102

    Article  CAS  Google Scholar 

  76. Thorp HH (1992) Inorg Chem 31: 1585

    Article  CAS  Google Scholar 

  77. Brown ID, Altermatt D (1985) Acta Crystallogr B41: 244

    Article  Google Scholar 

  78. Soricelli CL, Szalai VA, Burgmayer SJN (1991) J Am Chem Soc 113: 9877

    Article  CAS  Google Scholar 

  79. Pilato RS, Eriksen K, Greaney MA, Gea Y, Taylor EC, Goswami S, Kilpatrick TG, Spiro TG, Rheingold AL, Stiefel EI (1993) Pterins, quinoxalines, and metallo-ene-dithiolates: synthetic approach to the molybdenum cofactor. In: Stiefel EI, Coucouvanis D, Newton WE (eds) Molybdenum enzymes, cofactors, and model systems. American Chemical Society, Washington, DC, p 83

    Google Scholar 

  80. Pilato RS, Eriksen K, Greaney MA, Gea Y, Taylor EC, Goswami S, Kilpatrick TG, Spiro TG, Rheingold AL, Stiefel EI (1991) J Am Chem Soc 113: 9372

    Article  CAS  Google Scholar 

  81. Chan MK, Mukund S, Kletzin A, Adams MWW, Rees DC (1995) Science 1463

    Google Scholar 

  82. Burgmayer SJN (unpublished results)

    Google Scholar 

  83. Burgmayer SJN, Pearsall D, manuscript to be submitted to J Am Chem Soc.

    Google Scholar 

  84. Funhashi Y, Kohzuma T, Odani A, Yamauchi O (1994) Chem Lett 385

    Google Scholar 

  85. Yamauchi O (1995) Pure Appl Chem 67: 297

    CAS  Google Scholar 

  86. Burgmayer SJN, Everett KM, Arkin MA, Mosny K (1991) J Bioinorg Chem 43: 581

    Google Scholar 

  87. Burgmayer SJN, Bharwani L, Mosny K (unpublished results)

    Google Scholar 

  88. Nasir M, Karlin K, Chen Q, Zubieta J (1992) J Am Chem Soc 114: 2264

    Article  CAS  Google Scholar 

  89. Schafer A, Fischer B, Paul H, Bosshard R, Hesse M, Viscontini M (1992) Helv Chim Acta 75: 1955

    Article  Google Scholar 

  90. Fischer B, Schafer A, Paul H, Bosshard R, Hesse M, Viscontini M (1993) Pteridines 4: 206

    CAS  Google Scholar 

  91. Schafer A, Fischer B, Bosshard R, Hesse M, Viscontini M (1993) In: Ayling JE, Gopal Nair M, Baugh CM, Viscontini M (eds) Chemistry and biology of pteridines. Proceedings of the 10th International Symposium on Pteridines and Folates. Plenum Press, New York, p 29

    Google Scholar 

  92. Albert A (1950) Biochem J 47: xxvii

    PubMed  CAS  Google Scholar 

  93. Albert A (1953) Biochem J 54: 646

    PubMed  CAS  Google Scholar 

  94. Hemmerich P, Muller F, Ehrenberg A (1965) The chemistry of flavin-metal interactions. In: King TE, Mason HS, Morrison M (eds) Oxidases and related redox systems, vol 1. Wiley, New York, p 157

    Google Scholar 

  95. Hemmerich P, Lauterwein J The structure and reactivity of flavin-metal complexes. In: Eichhorn GL (ed) Bioinorganic chemistry, chap 32, p 1198

    Google Scholar 

  96. Wade TD, Fritchie CJ (1973) J Biol Chem 248: 2337

    PubMed  CAS  Google Scholar 

  97. Yu MY, Fritchie CJ (1975) J Biol Chem 250: 946

    PubMed  CAS  Google Scholar 

  98. Muller F, Hemmerich P, Ehrenberg A, Palmer G, Massey V (1970) Eur J Biochem 14: 185

    Article  PubMed  CAS  Google Scholar 

  99. Clarke MJ, Dowling MG, Garafalo AR, Brennan TF (1980) J Biol Chem 255: 4372

    Google Scholar 

  100. Clarke MJ, Dowling MG (1981) Inorg Chem 20: 3506

    Article  CAS  Google Scholar 

  101. Abelleira A, Galang R, Clarke MJ (1990) Inorg Chem 29: 633

    Article  CAS  Google Scholar 

  102. Selbin J, Sherrill J, Bigger CH (1974) Inorg Chem 13: 2544

    Article  CAS  Google Scholar 

  103. Sawyer DT, Doub WH (1975) Inorg Chem 14: 1736

    Article  CAS  Google Scholar 

  104. Kaufmann HL, Burgmayer SJN (submitted to Inorg Chem)

    Google Scholar 

  105. Frausto da Silva JJR, Williams RJP (1991) The bioinorganic chemistry of the elements. Clarendon Press, Oxford

    Google Scholar 

  106. Pierpont C (1994) Prog Inorg Chem 41: 331

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nieter Burgmayer, S.J. (1998). Electron transfer in transition metal-pteridine systems. In: Less Common Metals in Proteins and Nucleic Acid Probes. Structure and Bonding, vol 92. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0081078

Download citation

  • DOI: https://doi.org/10.1007/BFb0081078

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63925-1

  • Online ISBN: 978-3-540-69667-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics