Skip to main content

Neutral models of geographical variation

  • Workshop Contributions
  • Conference paper
  • First Online:
Stochastic Spatial Processes

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1212))

Abstract

The amount and pattern of genetic variability in a geographically structured population under the joint action of migration, mutation, and random genetic drift is studied. The monoecious, diploid population is subdivided into panmictic colonies that exchange gametes. In each deme, the rate of self-fertilization is equal to the reciprocal of the number of individuals in that deme. Generations are discrete and nonoverlapping; the analysis is restricted to a single locus in the absence of selection; every allele mutates to new alleles at the same rate. It is shown that if the population is at equilibrium, the number of demes is finite, and migration does not alter the deme sizes, then population subdivision produces interdeme differentiation and the mean homozygosity and the effective number of alleles exceed their panmictic values. The equilibrium and transient states of the island, circular stepping-stone, and infinite linear stepping-stone models are investigated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apostol, T. M. 1974. Mathematical Analysis, 2nd edition. Addison-Wesley, Reading, Mass.

    MATH  Google Scholar 

  • Crow, J. F., and Maruyama, T. 1971. The number of neutral alleles maintained in a finite, geographically structured population. Theor. Pop. Biol. 2, 437–453.

    Article  Google Scholar 

  • Erdélyi, A. 1954. Tables of Integral Transforms, Vol. I. McGraw-Hill, New York.

    MATH  Google Scholar 

  • Feller, W. 1968. An Introduction to Probability Theory and Its Applications, Vol. I, 3rd edition. Wiley, New York.

    MATH  Google Scholar 

  • Feller, W. 1971. An Introduction to Probability Theory and Its Applications, Vol. II, 2nd edition. Wiley, New York.

    MATH  Google Scholar 

  • Felsenstein, J. 1975. A pain in the torus: some difficulties with models of isolation by distance. Am. Nat. 109, 359–368.

    Article  Google Scholar 

  • Fleming, W. H., and Su, C.-H. 1974. Some one-dimensional migration models in population genetics theory. Theor. Pop. Biol. 5, 431–449.

    Article  MATH  Google Scholar 

  • Kimura, M. 1963. A probability method for treating inbreeding systems, especially with linked genes. Biometrics 19, 1–17.

    Article  MATH  Google Scholar 

  • Kimura, M., and Crow, J. F. 1964. The number of alleles that can be maintained in a finite population. Genetics 49, 725–738.

    Google Scholar 

  • Kimura, M., and Maruyama, T. 1971. Pattern of neutral polymorphism in a geographically structured population. Genet. Res. 18, 125–131.

    Article  Google Scholar 

  • Kingman, J. F. C. 1977. Remarks on the spatial distribution of a reproducing population. J. Appl. Prob. 14, 577–583.

    Article  MathSciNet  MATH  Google Scholar 

  • Latter, B. D. H. 1973. The island model of population differentiation: A general solution. Genetics 73, 147–157.

    MathSciNet  Google Scholar 

  • Li, W.-H. 1976. Effect of migration on genetic distance. Am. Nat. 110, 841–847.

    Article  Google Scholar 

  • Malécot, G. 1946. La consanguinité dans une population limitée. Comp. Rend. Acad. Sci. 222, 841–843.

    Google Scholar 

  • Malécot, G. 1948. Les mathématiques de l'hérédité. Masson, Paris. (Extended translation: The Mathematics of Heredity. Freeman, San Francisco, 1969.)

    MATH  Google Scholar 

  • Malécot, G. 1950. Quelques schémas probabilistes sur la variabilité des populations naturelles. Ann. Univ. Lyon, Sci., Sect. A, 13, 37–60.

    MATH  Google Scholar 

  • Malécot, G. 1951. Un traitement stochastiques des problèmes linéaires (mutation, linkage, migration) en Génétique de Population. Ann. Univ. Lyon, Sci., Sect. A, 14, 79–117.

    MATH  Google Scholar 

  • Malécot, G. 1965. Évolution continue des fréquences d'un gène mendélien (dans le cas de migration homogène entre groupes d'effectif fini constant). Ann. Inst. H. Poincaré, Sect. B, 2, 137–150.

    MATH  Google Scholar 

  • Malécot, G. 1967. Identical loci and relationship. Proc. Fifth Berk. Symp. Math. Stat. Prob. 4, 317–332.

    MATH  Google Scholar 

  • Malécot, G. 1975. Heterozygosity and relationship in regularly subdivided populations. Theor. Pop. Biol. 8, 212–241.

    Article  MathSciNet  Google Scholar 

  • Maruyama, T. 1970. Effective number of alleles in a subdivided population. Theor. Pop. Biol. 1, 273–306.

    Article  MathSciNet  MATH  Google Scholar 

  • Maruyama, T. 1971. The rate of decrease of heterozygosity in a population occupying a circular or linear habitat. Genetics 67, 437–454.

    MathSciNet  Google Scholar 

  • Maynard Smith, J. 1970. Population size, polymorphism, and the rate of non-Darwinian evolution. Am. Nat. 104, 231–237.

    Article  Google Scholar 

  • Moran, P. A. P. 1959. The theory of some genetical effects of population subdivision. Aust. J. Biol. Sci. 12, 109–116.

    Article  MATH  Google Scholar 

  • Nagylaki, T. 1974a. Genetic structure of a population occupying a circular habitat. Genetics 78, 777–790.

    MathSciNet  Google Scholar 

  • Nagylaki, T. 1974b. The decay of genetic variability in geographically structured populations. Proc. Natl. Acad. Sci. USA 71, 2932–2936.

    Article  MathSciNet  MATH  Google Scholar 

  • Nagylaki, T. 1976. The decay of genetic variability in geographically structured populations. II. Theor. Pop. Biol. 10, 70–82.

    Article  MathSciNet  MATH  Google Scholar 

  • Nagylaki, T. 1977. Selection in One-and Two-Locus Systems. Springer, Berlin.

    Book  MATH  Google Scholar 

  • Nagylaki, T. 1978a. The geographical structure of populations. In Studies in Mathematics. Vol. 16: Studies in Mathematical Biology. Part II (S. A. Levin, ed.). Pp. 588–624. The Mathematical Association of America, Washington.

    Google Scholar 

  • Nagylaki, T. 1978b. A diffusion model for geographically structured populations. J. Math. Biol. 6, 375–382.

    Article  MathSciNet  MATH  Google Scholar 

  • Nagylaki, T. 1980. The strong-migration limit in geographically structured populations. J. Math. Biol. 9, 101–114.

    Article  MathSciNet  MATH  Google Scholar 

  • Nagylaki, T. 1982. Geographical invariance in population genetics. J. Theor. Biol. 99, 159–172.

    Article  MathSciNet  Google Scholar 

  • Nagylaki, T. 1983. The robustness of neutral models of geographical variation. Theor. Pop. Biol. 24, 268–294.

    Article  MATH  Google Scholar 

  • Nagylaki, T. 1984. Some mathematical problems in population genetics. In Proc. Symp. Appl. Math. Vol. 30: Population Biology (S. A. Levin, ed.). Pp. 19–36. American Mathematical Society, Providence, R. I.

    Google Scholar 

  • Nei, M. 1975. Molecular Population Genetics and Evolution. North-Holland, Amsterdam.

    Google Scholar 

  • Protter, M. H., and Weinberger, H. F. 1967. Maximum Principles in Differential Equations. Prentice-Hall, Englewood Cliffs, N. J.

    MATH  Google Scholar 

  • Sawyer, S. 1976. Results for the stepping-stone model for migration in population genetics. Ann. Prob. 4, 699–728.

    Article  MathSciNet  MATH  Google Scholar 

  • Sawyer, S. 1977. Asymptotic properties of the equilibrium probability of identity in a geographically structured population. Adv. Appl. Prob. 9, 268–282.

    Article  MathSciNet  MATH  Google Scholar 

  • Sawyer, S., and Felsenstein, J. 1981. A continuous migration model with stable demography. J. Math. Biol. 11, 193–205.

    Article  MathSciNet  MATH  Google Scholar 

  • Sudbury, A. 1977. Clumping effects in models of isolation by distance. J. Appl. Prob. 14, 391–395.

    Article  MathSciNet  MATH  Google Scholar 

  • Weiss, G.H., and Kimura, M. 1965. A mathematical analysis of the stepping-stone model of genetic correlation. J. Appl. Prob. 2, 129–149.

    Article  MathSciNet  MATH  Google Scholar 

  • Wright, S. 1931. Evolution in Mendelian populations. Genetics 16, 97–159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Petre Tautu

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag

About this paper

Cite this paper

Nagylaki, T. (1986). Neutral models of geographical variation. In: Tautu, P. (eds) Stochastic Spatial Processes. Lecture Notes in Mathematics, vol 1212. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0076251

Download citation

  • DOI: https://doi.org/10.1007/BFb0076251

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16803-4

  • Online ISBN: 978-3-540-47053-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics