Skip to main content

Degree-preserving forests

  • Contributed Papers
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1998 (MFCS 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1450))

  • 176 Accesses

Abstract

We consider the degree-preserving spanning tree (DPST) problem: given a connected graph G, find a spanning tree T of G such that as many vertices of T as possible have the same degree in T as in G. This problem is a graph-theoretical translation of a problem arising in the system-theoretical context of identifiability in networks, a concept which has applications in e.g., water distribution networks and electrical networks. We show that the DPST problem is NP-complete, even when restricted to split graphs or bipartite planar graphs. We present linear time approximation algorithms for planar graphs of worst case performance ratio 1−ε for every constant ε > 0. Furthermore we give exact algorithms for interval graphs (linear time), graphs of bounded treewidth (linear time), cocomparability graphs (O(n 4)), and graphs of bounded asteroidal number.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaron, M. and M. Lewinter, 0-deficient vertices of spanning trees, NY Acad. Sci. Graph Theory Notes XXVII, (1994), pp. 31–32.

    Google Scholar 

  2. Arnborg S., J. Lagergren and D. Seese, Easy problems for tree-decomposable graphs, Journal of Algorithms 12, (1991), pp. 308–340.

    Article  MATH  MathSciNet  Google Scholar 

  3. Baker, B. S., Approximation algorithms for NP-complete problems on planar graphs, J. ACM 41, (1994), pp. 153–180.

    Article  MATH  Google Scholar 

  4. Bellare, M., O. Goldreich and M. Sudan, Free bits, PCPs and non-approximability — towards tight results, SIAM J. Comput. 27 (1998), pp. 804–915.

    Article  MATH  MathSciNet  Google Scholar 

  5. Camerini, P. M., G. Galbiati and F. Maffioli, Complexity of spanning tree problems: Part I, Eur. J. Oper. Res. 5, (1980), pp. 346–352.

    Article  MATH  MathSciNet  Google Scholar 

  6. Camerini, P. M., G. Galbiati and F. Maffioli, The complexity of weighted multiconstrained spanning tree problems, Colloq. Math. Soc. Janos Bolyai 44, (1984), pp. 53–101.

    MathSciNet  Google Scholar 

  7. Damaschke, P., Degree-preserving spanning trees and coloring bounded degree graphs, Manuscript 1997.

    Google Scholar 

  8. Dell'Amico, M., M. Labbé and F. Maffioli, Complexity of spanning tree problems with leaf-dependent objectives, Networks 27, (1996), pp. 175–181.

    Article  MATH  MathSciNet  Google Scholar 

  9. Garey, M. R. and D.S. Johnson, Computers and Intractability: A guide to the Theory of NP-completeness, Freeman, New York, 1979.

    Google Scholar 

  10. Golumbic, M. C., Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.

    MATH  Google Scholar 

  11. Håstad, J., Clique is hard to approximate within n 1-ɛ, Proc. 37th Ann. IEEE Symp. on Foundations of Comput. Sci., (1996), IEEE Computer Society, pp. 627–636.

    Google Scholar 

  12. Lewinter, M., Interpolation theorem for the number of degree-preserving vertices of spanning trees, IEEE Trans. Circ. Syst. CAS-34, (1987), 205.

    Article  MathSciNet  Google Scholar 

  13. Lewinter, M. and M. Migdail-Smith, Degree-preserving vertices of spanning trees of the hypercube, NY Acad. Sci. Graph Theory Notes XIII, (1987), 26–27.

    Google Scholar 

  14. Pothof, I. W. M. and J. Schut, Graph-theoretic approach to identifiability in a water distribution network, Memorandum 1283, Faculty of Applied Mathematics, University of Twente, Enschede, the Netherlands, (1995).

    Google Scholar 

  15. Rahal, A co-tree flows formulation for steady state in water distribution networks, Adv. Eng. Softw. 22, (1995), pp. 169–178.

    Article  Google Scholar 

  16. Walter, E., Identifiability of state space models with applications to transformation systems, Springer-Verlag, New York NY, USA, 1982.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Luboš Brim Jozef Gruska Jiří Zlatuška

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Broersma, H. et al. (1998). Degree-preserving forests. In: Brim, L., Gruska, J., Zlatuška, J. (eds) Mathematical Foundations of Computer Science 1998. MFCS 1998. Lecture Notes in Computer Science, vol 1450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0055822

Download citation

  • DOI: https://doi.org/10.1007/BFb0055822

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64827-7

  • Online ISBN: 978-3-540-68532-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics