Skip to main content

Bioreactor for mammalian cell culture

  • Conference paper
  • First Online:
Vertebrate Cell Culture II and Enzyme Technology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 39/1))

Abstract

Purpose of this article is to review the current status of bioreactor design for mammalian cell culture. Morphological and biochemical features of two major mammalian cell groups, anchoragedependent and independent cells are proposed as a basis for different behavior at their cultivation. Different bioreactor configurations are systematically discussed through enumerating elementary physical phenomena and through stressing their physiological significance. Special considerations are given to those areas which are inherent to mammalian cell bioreactor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a:

global air-liquid interface

b:

stirrer blade thickness

c:

exponent in Eq. (33) solids concentration

¯c:

mean solids concentration

C:

constant in Eq. (21)

CD :

drag coefficient

d:

impeller diameter

dc :

cell size

dp :

particle size

D:

(characteristic) vessel dimension (diameter)

D02 :

oxygen diffusivity in medium

F1,2 :

forces at flow

g:

gravitational constant

h:

homogeneous zone height

H:

liquid height

HZH:

homogeneous zone height (h/H, dimensionless)

ICS:

cell-impeller collision severity

kL :

mass transfer (surface) coefficient

kL :

a volumetric mass transfer coefficient

¯n:

average fluid velocity at a level (Eq. 3)

nb :

number of impeller blades

N:

impeller speed

Nb :

bubble concentration

Ni :

cell-impeller collision frequency

Np :

power number

Nmax :

maximum cell packing density

Ncs :

impeller speed at complete solids suspension

Nhs :

impeller speed at homogeneous suspension

P:

power input

r:

annulus radius

R1 :

inner cylinder radius

R2 :

outer cylinder radius

Re:

impeller Reynolds number

Rep :

particle Reynolds number

Rb :

bubble radius

Shs :

surface Sherwood number

T:

torque

TCS:

turbulent collision severity

u:

settling particle (cell) velocity

um :

spatial mean velocity

umm :

particle-fluid relative velocity

u′:

fluctuating fluid velocity component (coordinate x)

u f :

root mean square value of fluctuating velocity component of turbulence

¯ubase :

mean liquid velocity at the bottom

v:

fluid velocity cell volume

v′:

fluctuating fluid velocity component (coordinate y)

vt :

bubble terminal velocity

vsg :

superficial gas velocity

V:

liquid volume

x:

streamline flow component

y:

radial flow component

α:

cone-and-plate viscometer angle

Β:

coefficient in Eq. (12)

γ:

shear rate

ε:

energy dissipation rate

εj :

local energy dissipation rate

η:

characteristic length of micro-scale eddy (Kolmogoroff micro-scale)

Μ:

fluid viscosity

Ν:

kinematic viscosity

ϱ:

fluid density

‡ϱ:

phase density difference

ϱc :

cell density

Τ:

shear stress

Τr :

Reynolds stress

Τt :

turbulent stress

Τv :

viscous stress

ϕ:

particle (cell) volume fraction

References

  1. Glacken MW, Fleischaker RJ, Sinskey AJ (1983) Ann. New York Acad. Sci. 413: 355

    CAS  Google Scholar 

  2. Hu W-S, Dodge TC (1985) Biotech. Progr. 1: 209

    Google Scholar 

  3. Arathoon WR, Birch JR (1986) Science 232: 1390

    PubMed  CAS  Google Scholar 

  4. Adamson SR, Schmidli B (1986) Can. J. Chem. Eng. 64: 531

    CAS  Google Scholar 

  5. Guharay F (1984) J. Physiol. 352: 685

    PubMed  CAS  Google Scholar 

  6. Lausman JB, Hallam TJ, Rink TJ (1987) Nature 325: 811

    Google Scholar 

  7. Salisbury JL, Condeelis JS, Satir P. In: Richter GW, Epstein, MA (eds) International review of experimental pathology, vol 24, Academic, New York, p. 1

    Google Scholar 

  8. Goldstein JL, Brown MS, Anderson RGW, Russell DW, Schneider WJ (1985) In: Palade GE, Alberts BM, Spudich JA (eds) Annual reviews of cell biology, vol 1, Annual Reviews Palo Alto p 1

    Google Scholar 

  9. Schwartz CJ, Nerem RM, Sprague EA, Levesque MJ, Steinbach BL (1986) Biorheology 23: 195

    Google Scholar 

  10. Fulton AB (1984) The cytoskeleton. Cellular architecture and choreography, Chapman and Hall, New York

    Google Scholar 

  11. Darnell J, Lodish H, Baltimore D (1986) Molecular cell biology, Scientific American Books, New York

    Google Scholar 

  12. Langanger B, Moeresmans M, Daneels G, Sobieszek A, De Brabander M, De Mey J (1986) J. Cell Biol. 102: 200

    PubMed  CAS  Google Scholar 

  13. Cleveland DW (1982) Cell 28: 689

    PubMed  CAS  Google Scholar 

  14. Welch WJ, Suhan JP (1986) J. Cell Biol. 103: 2035

    PubMed  CAS  Google Scholar 

  15. Freshney RI (1987) Culture of animal cells. A manual of basic technique, 2nd ed., A. R. Liss, New York

    Google Scholar 

  16. Griffiths JB, Riley PA (1985) In: Spier RE, Griffiths JB (eds) Animal cell biotechnology, vol. 1, Academic, London, p 17

    Google Scholar 

  17. Ben-Ze’ev A, Farmer SR, Penman S (1980) Cell 21: 365

    PubMed  CAS  Google Scholar 

  18. Quintanilla M, Brown K, Ramsden M, Balmain A (1986) Nature 322: 78

    PubMed  CAS  Google Scholar 

  19. Kapp-Pierce J (1987) personal communication, Washington University Medical School, St. Louis

    Google Scholar 

  20. Barnes D (1987) Biotechniques 5: 534

    CAS  Google Scholar 

  21. Eshhar Z (1985) In: Springer TA (ed) Hybridoma technology in the bioscience and medicine, Plenum, New York, p 3

    Google Scholar 

  22. Varani J, Wass JA, Rao KMK (1983) J. Natl. Cancer Inst. 70: 805

    PubMed  CAS  Google Scholar 

  23. Mely-Goubert B, Bellgran D (1981) J. Immunol. 127: 399

    PubMed  CAS  Google Scholar 

  24. Gowingt LR, Tellam RL, Banyard MRC (1984) J. Cell Sci. 69: 137

    Google Scholar 

  25. Chen LB, Rosenberg S, Nodakavukaren KK, Walker ES, Shepherd EL, Steerle Jr GD (1985) In: Springer TA (ed) Hybridoma technology in the bioscience and medicine, Plenum, New York

    Google Scholar 

  26. Pasternak C, Elson EL (1985) J. Cell Biol. 10: 860

    Google Scholar 

  27. Mazur MT, Williamson JR (1977) J. Cell Biol. 75: 185

    PubMed  CAS  Google Scholar 

  28. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1983) Molecular biology of the cell, Garland, New York

    Google Scholar 

  29. Rosenberg MZ, Prokop A, Kargi F, Dunlop E (1988) In: Fiechter A (ed) Adv. biochem. engin./ biotechnol., Springer, Berlin Heidelberg New York, submitted

    Google Scholar 

  30. Packard B (1986) Trends Biochem. Sci. 11: 154

    Google Scholar 

  31. Berridge MJ, Irvine RF (1984) Nature 312: 315

    PubMed  CAS  Google Scholar 

  32. Bell RM (1986) Cell 45: 631

    PubMed  CAS  Google Scholar 

  33. Lindquist S (1986) In: Richardson CC, Boyer PD, Dawid IB, Meister A (eds) Annual review of biochemistry, vol 55, Annual Reviews, Palo Alto, p 1151

    Google Scholar 

  34. Stathopoulos NA, Hellums JD (1985) Biotech. Bioeng. 27: 1021

    Google Scholar 

  35. Burdon RH (1986) Biochem. J. 240: 313

    PubMed  CAS  Google Scholar 

  36. Pelham HRB (1986) Cell 46: 959

    PubMed  CAS  Google Scholar 

  37. Taglicht D, Padan E, Oppenheim AB, Schuldiner S (1987) J. Bacteriol 169: 885

    PubMed  CAS  Google Scholar 

  38. Parag HA, Raboy B, Kulka RG (1987) EMBO J. 6: 55

    PubMed  CAS  Google Scholar 

  39. Spier RE, Fowler MW (1985) In: Moo-Young M (ed) Comprehensive biotechnology, vol. 1, Pergamon, Oxford, p 301

    Google Scholar 

  40. House WM, Shearer M, Maroudas NG (1972) Exptl. Cell Res. 71: 293

    PubMed  CAS  Google Scholar 

  41. Spier RE (1985) In: Spier RE, Griffiths JB (eds) Animal cell biotechnology, vol. 1, Academic, London, p 243

    Google Scholar 

  42. Skoda R, Pakos W (1977) Belgian Patent 854,898

    Google Scholar 

  43. Carwell J, Burbridge C (1985) In: The world biotech report 1985, vol. 1 (Europe), On Line, London, p 83

    Google Scholar 

  44. Birch JR, Cartwright TB, Ford JA (1981) German Patent DE 3,031,617

    Google Scholar 

  45. Hurni WM, McAleer WJ, Hilleman MR (1978) British Patent 1,498,354

    Google Scholar 

  46. Girard HC, Suton M, Erdem H, Gurham I (1980) Biotech. Bioeng. 22: 477

    Google Scholar 

  47. Knazek RA, Gullino PM, Kohler PO, Dedrick RL (1972) Science 178: 65

    PubMed  CAS  Google Scholar 

  48. Munder PG, Modonell M, Wallach DFH (1971) FEBS Lett. 5: 191

    Google Scholar 

  49. Jensen MD (1981) Biotech. Bioeng. 23: 2703

    CAS  Google Scholar 

  50. Lydersen BK, Pugh GG, Paris MS, Sharma BP, Noll LA (1985) Bio/Technol 3: 63

    Google Scholar 

  51. Earle WR, Schilling EL, Shannon JE (1951) J. Natl. Cancer Inst. 12: 179

    PubMed  CAS  Google Scholar 

  52. Whiteside JP, Spier RE (1981) Biotech. Bioeng. 23: 551

    Google Scholar 

  53. van Wezel AL (1967) Nature 216: 64

    PubMed  Google Scholar 

  54. Karkare SB, Phillips PG, Burke DH, Dean Jr, RC (1985) In: Feder J, Tolbert WR (eds) Large-scale mammalian cell culture, Academic, Orlando, p 127

    Google Scholar 

  55. Lim F, Sun AM (1980) Science 210: 908

    PubMed  CAS  Google Scholar 

  56. Panina GF (1985) In: Spier RE, Griffiths JB (eds) Animal cell biotechnology, vol. 1, Academic, London, p 211

    Google Scholar 

  57. Oldshue JY (1983) Fluid mixing technology, McGraw-Hill, New York

    Google Scholar 

  58. Moore BE, Hansenpuch RE, Gerner RE, Burns AA (1968) Biotech. Bioeng 10: 625

    Google Scholar 

  59. Reuveny S, Zheng Z-B, Eppstein L (1986) Amer. Biotech. 4: 28

    CAS  Google Scholar 

  60. DeBruyne NA, Morgan BJ (1981) Internat. Lab. 11: 49

    Google Scholar 

  61. Techne Corporation, Inc., Princeton NJ (1985) The BR-05 Bioreactor, Catalog 20312

    Google Scholar 

  62. LÄderach H, Widmer F, Einsele A (1978) In: Proc. First Europ. Congr. Biotech., part 1, p 84, Interlaken, Switzerland

    Google Scholar 

  63. Roubicek RV, Feres V (1987) U.S. Patent 4,657,677

    Google Scholar 

  64. Erickson LE, Stephanopoulos G (1987) In: Carberry JJ, Varma A (eds) Chemical reaction and reactor engineering, M. Dekker, New York, p 779

    Google Scholar 

  65. Brown PC, Costello MAC, Oakley R, Lewis JL (1985) In: Feder J, Tolbert WR (eds) Large-scale mammalian cell culture, Academic, Orlando, p 59

    Google Scholar 

  66. Spectrum Medical Industries, Inc., Los Angeles, CA (1987) Fleaker Hollow Fiber Concentration System, technical information

    Google Scholar 

  67. Tolbert WR, Lewis Jr C, White PJ, Feder J (1985) In: Feder J, Tolbert WR (eds) Large-scale mammalian cell culture, Academic, Orlando, p 97

    Google Scholar 

  68. Merten O-W, Reiter S, Himmler G, Schirer W, Katinger H (1985) Develop. Biol. Standard. 60: 219

    CAS  Google Scholar 

  69. Feder J, Tolbert WR (1983) Sci. American 248: 36

    CAS  Google Scholar 

  70. Germerdonk R, Ohlinger H-P (1987) Chem.-Ing.-Techn. 59: 244

    CAS  Google Scholar 

  71. Litz LM (1985) Chem. Eng. Progr. 81: 36

    CAS  Google Scholar 

  72. Spier RE, Whiteside JP (1984) Develop. Biol. Standard. 55: 151

    Google Scholar 

  73. Bajpai RK, Reuss M (1988) Chem. Eng. Commun., submitted

    Google Scholar 

  74. König B, Buchholz R, Lücke J, Schügerl K (1978) Ger. Chem. Eng. 1: 199

    Google Scholar 

  75. Bellco Glass, Inc., Vineland, N.J. (1985) The Bellco Bioreactor, technical information

    Google Scholar 

  76. Ku K, Kuo MJ, Delente J, Wildi BS, Feder J (1981) Biotech. Bioeng. 23: 79

    Google Scholar 

  77. Dostalek M, Haggstrom M (1982) Biotech. Bioeng. 24: 2077

    Google Scholar 

  78. Klement G, Scheirer W, Katinger HWD (1987) Develop. Biol. Standard. 66: 221

    CAS  Google Scholar 

  79. Bioreactor Technology, Inc., Schenectady, N.Y. (1987) MCBR Production System (distributed by C. Itoh Co.)

    Google Scholar 

  80. Feder J, Lewis C, Tolbert WR (1984) European Pat. 0113328

    Google Scholar 

  81. Mattiasson B (1983) In: Mattiasson B (ed) Immobilized cells and organelles, CRC Press, Boca Raton

    Google Scholar 

  82. Tyo MA, Hu W-S (1986) In: 192nd ACS Meeting, Division of Microbial and Biochemical Technology, Anaheim, CA, Sept. 7–12, 1986, paper 34

    Google Scholar 

  83. Tyo MA, Spier RE (1987) Enzyme Microb. Technol. 9: 514

    CAS  Google Scholar 

  84. van Wezel AL, van der Velden-de Groot CAM, de Haen HH, van den Henvel N, Schasfoort R (1985) Develop. Biol. Standard. 60: 229

    Google Scholar 

  85. Rebsamen E, Goldinger W, Schierer W, Merten O-W, Pálfi GE (1987) Develop. Biol. Standard. 66: 273

    CAS  Google Scholar 

  86. Zwietering TN (1958) Chem. Eng. Sci. 8: 244

    CAS  Google Scholar 

  87. Chudacek MW (1982) In: Stephens HS, Goodes DH (eds) 4th European Conf. on Mixing, Leeuwenhorst, The Netherlands, Cranfield, BHRA Fluid Engineering, p 275

    Google Scholar 

  88. Chudacek MW (1985) Chem. Eng. Sci. 40: 385

    Google Scholar 

  89. Chudacek MW (1985) Ind. Eng. Chem. Proc. Des. Develop. 24: 858

    CAS  Google Scholar 

  90. Buurman C, Resoort G, Plaschkes A (1986) Chem. Eng. Sci. 41: 2865

    CAS  Google Scholar 

  91. Bourne, JR, Sharma RN (1974) Chem. Eng. J. 8: 243

    CAS  Google Scholar 

  92. Musil L (1976) Collect. Czechoslov. Chem. Commun. 41: 839

    CAS  Google Scholar 

  93. Nienow AW (1985) In: Ulbrecht JJ, Patterson GK (eds) Mixing of liquids by mechanical agitation, Gordon and Breach, New York

    Google Scholar 

  94. Kay JM, Nedderman RM (1985) Fluid mechanics and transfer processes, Cambridge University Press, Cambridge

    Google Scholar 

  95. Muroyama K, Mitani Y, Yasunishi A (1987) Chem. Eng. Commun. 34: 87

    Google Scholar 

  96. Aeschbach S, Bourne JR (1972) Chem. Eng. J. 4: 234

    CAS  Google Scholar 

  97. Kneule F (1985) Internat. Chem. Eng. 25: 214

    Google Scholar 

  98. Chudacek MW (1986) Ind. Eng. Chem. Fundam. 25: 391

    CAS  Google Scholar 

  99. Weisman J, Efferding LE (1960) AIChE J. 6: 419

    CAS  Google Scholar 

  100. Einenkel W-D (1979), VDI-Forschungsheft 595: 2

    Google Scholar 

  101. Rieger F, Novák V, Havelková D (1986) Chem. Eng. J. 33: 143

    CAS  Google Scholar 

  102. Schulz R, Keaft H, Piehl GW, Lehmann J (1987) Develop. Biol. Standard 66: 489

    CAS  Google Scholar 

  103. Adema E, Sinskey AJ (1987) Biotech. Progr. 3: 74

    Google Scholar 

  104. Hallsby GA, Shuler ML (1986) Biotech. Bioeng. Symp. 17: 741

    CAS  Google Scholar 

  105. Separation Equipment Technologies, Inc. (Setec), Livermore, CA. (1987) Tridentric (TM) Bioreactor, Cross-flow Products Bulletin, April 1

    Google Scholar 

  106. Pirt SJ (1975) Principles of microbe and cell cultivation, Blackwell, Oxford

    Google Scholar 

  107. Evans EA, Skalak R (1980) Mechanics and thermodynamics of biomembranes, CRC Press, Boca Raton

    Google Scholar 

  108. Einav S, Lee SL (1973) J. Multiphase Flow 1: 73

    Google Scholar 

  109. Wichterle K, Kadlec M, Žák S, Mitschka P (1984) Chem. Eng. Commun. 26: 25

    CAS  Google Scholar 

  110. Schürch U, Einsele A, Kramer H, Widmer F, Eppenberger HM (1987) In: Neijssel OM, van der Meer RR, Luyben KChAM (eds) Proc. 4th European Congress on Biotechnology 1987, vol. 3, Elsevier, Amsterdam, p 569

    Google Scholar 

  111. Calderbank PH, Moo-Young MB (1959) Trans. Inst. Chem. Eng. 37: 28

    Google Scholar 

  112. Reynolds AJ (1971) Thermofluid dynamics, Wiley, London

    Google Scholar 

  113. Nagata S (1975) Mixing: Principles and applications, Wiley, New York

    Google Scholar 

  114. Thomas DG (1964) AIChE J. 10: 517

    CAS  Google Scholar 

  115. Matsuo T, Unno H (1981) J. Environ. Eng. Div., ASCE 107: 527

    CAS  Google Scholar 

  116. Toni DT, Bagster DF (1978) Trans. Inst. Chem. Engrs. 56: 1

    Google Scholar 

  117. Levins DM, Glastonbury JR (1972) Chem. Eng. Sci. 27: 537

    CAS  Google Scholar 

  118. Batchelor GK (1960) The theory of homogeneous turbulence, Cambridge University Press, Cambridge

    Google Scholar 

  119. Shinnar R (1961) J. Fluid Mech. 10: 259

    Google Scholar 

  120. Cherry RS, Papoutsakis ET (1986) Bioprocess Eng. 1: 29

    Google Scholar 

  121. Friedlander SK (1957) AIChE J. 3: 43

    CAS  Google Scholar 

  122. Rosenberg, MZ (1987) DSc Thesis, Washington University, St. Louis

    Google Scholar 

  123. Hinze JO (1971) Progr. Heat Mass Transfer 6: 433

    Google Scholar 

  124. Das P, Kumar R, Ramkrishna D (1987) Chem. Eng. Sci. 42: 213

    CAS  Google Scholar 

  125. Crougham MS, Hamel J-FP, Wang DIC (1987) Biotech. Bioeng. 29: submitted

    Google Scholar 

  126. Kilburn DG, Webb FC (1968) Biotech. Bioeng. 10: 801

    CAS  Google Scholar 

  127. Radlett PJ, Telling RC, Whiteside JP, Maskell MA (1972) Biotech. Bioeng. 14: 437

    CAS  Google Scholar 

  128. Telling RC, Elsworth R (1965) Biotech. Bioeng. 7: 417

    Google Scholar 

  129. Spier RE, Griffiths B (1984) Develop. Biol. Standard. 55: 81

    Google Scholar 

  130. Aunins JG, Crougham MS, Wang DIC, Goldstein JM (1986) Biotech. Bioeng. Symp. 17: 1

    Google Scholar 

  131. Mercer D (1981) Biotech. Bioeng. 23: 2421

    Google Scholar 

  132. Clark NN, Atkinson CM, Flemmer RLC (1987) AIChE J. 33: 515

    CAS  Google Scholar 

  133. Handa A, Emery AN, Spier RR (1987) Develop. Biol. Standard. 66: 241

    CAS  Google Scholar 

  134. Donaldson TL, Boonstra EF, Hammond JM (1980) J. Coll. Interfac. Sci. 74: 441

    CAS  Google Scholar 

  135. Frangos JA, McIntire LV, Eskin SG (1987) Biotech. Bioeng. submitted

    Google Scholar 

  136. Ben-Ze’ev A (1985) Exptl. Cell Res. 157: 520

    PubMed  CAS  Google Scholar 

  137. Napolitano EW, Pachter JS, Liem RKH (1987) J. Biol. Chem. 262: 1493

    PubMed  CAS  Google Scholar 

  138. Fleischaker RJ, Sinskey AJ (1981) Europ. J. Appl. Microbiol. Biotechnol. 12: 193

    Google Scholar 

  139. McLimans WF, Blumenson LE, Tunnah KV (1968) Biotech. Bioeng. 10: 741

    CAS  Google Scholar 

  140. Moser A (1973) Biotech. Bioeng. Symp. 4(1): 399

    Google Scholar 

  141. Mukhopadhyay SN, Ghose TK (1978) J. Ferment. Technol. 56: 558

    Google Scholar 

  142. Danckwerts PV (1970) Gas-liquid reactions, McGraw Hill, New York

    Google Scholar 

  143. Phillips KL, Sallans HR, Spencer JFT (1961) Ind. Eng. Chem. 53: 749

    CAS  Google Scholar 

  144. Coppock PD, Meiklejohn GT (1951) Trans. Inst. Chem. Engrs. 29: 75

    CAS  Google Scholar 

  145. Moser A (1977) Chem.-Ing.-Techn. 49: 612

    CAS  Google Scholar 

  146. Harakas NK, Lewis C, Bartram RD, Wildi BS, Feder J (1984) Advan. Exptl. Med. Biol. 172: 119

    CAS  Google Scholar 

  147. Chen BH, Mallas K, McMillan AF (1985) AIChE J. 31: 510

    CAS  Google Scholar 

  148. Hu W-S, Wang DIC (1986) In: Thilly WG (ed) Animal cell technology, Butterworths, Boston, p 167

    Google Scholar 

  149. Katinger H, Scheirer W (1985) In: Spier RE, Griffiths JB (eds) vol 1, Animal cell biotechnology, Academic, London, p 167

    Google Scholar 

  150. Lehmann J, Piehl GW, Schulz R (1987) Develop. Biol. Standard. 66: 227

    CAS  Google Scholar 

  151. Phillips AW, Ball GD, Fantes KH, Finter NB, Johnson MD (1985) In: Feder J, Tolbert WR (eds) Large-scale mammalian cell culture, Academic, New York, p 87

    Google Scholar 

  152. Birch JR, Thompson PW, Lambert K, Boraston R (1985) In: Feder J, Tolbert WR (eds) Large-scale mammalian cell culture, Academic, New York, p 1

    Google Scholar 

  153. Banks GT (1979) In: Wiseman A (ed) Topics in enzyme and fermentation technology, vol. 3, Ellis Horwood, Chichester, p 170

    Google Scholar 

  154. Montagnon B, Vincent-Falquet JC, Fanget B (1984) Develop. Biol. Standard. 55: 37

    Google Scholar 

  155. Nilsson K (1987) Trends Biotech. 5: 73

    Google Scholar 

  156. Parenteral Drug Association, Inc. (1980) Technical Monograph No. 1, Philadelphia

    Google Scholar 

  157. 21 Code of Federal Register, 820.1–820.185, April 1, 1987

    Google Scholar 

  158. Harrison FG (1985) Bio/Technol. 3: 43

    Google Scholar 

  159. Croy RRD, Fielding RM, Billiet CL (1984) Process Biochem. 19 (6): 209

    Google Scholar 

  160. Ball GD (1985) In: Spier RE, Griffiths JB (eds) Animal cell biotechnology, vol 2, Academic, London, p 87

    Google Scholar 

  161. Giorgio RJ, Wu JJ (1986) Trends Biotech. 4: 60

    CAS  Google Scholar 

  162. Glacken MW, Fleischaker RJ, Sinskey AJ (1986) Biotech. Bioeng. 28: 1376

    CAS  Google Scholar 

  163. Charles River Biotechnical Services, Inc., Wilmington, MA (1987) The Opticell Culture System, technical bulletin

    Google Scholar 

  164. Armiger WB, Forro JR, Lee J-F, MacMichael G, Mutharasan R (1987) On-line measurement of hybridoma growth by culture fluorescence, a communication, BioChem Technology, Inc., Malvern, PA

    Google Scholar 

  165. Fernandez EJ, Clark DS (1987) Enzyme Microb. Technol. 6: 259

    Google Scholar 

  166. Drury DD, Dale BE (1987) Biotech. Bioeng. submitted

    Google Scholar 

  167. Aguayo JB, Blackband SJ, Schoenigo J, Mattingly MA, Hindermann M (1986) Nature 322: 190

    PubMed  CAS  Google Scholar 

  168. Sprague EA, Steinbach BL, Nerem RM, Schwartz CJ (1987) Circulation 76: 648

    PubMed  CAS  Google Scholar 

  169. Lambe CA, Walker AG (1987) In: Webb C, Mavituma F (eds) Plant and Animal Cells. Process Possibilities, E. Horwood, Chichester, p 116

    Google Scholar 

  170. Griffiths JB, Cameron DR, Looby D (1987) In: Webb C, Mavituma F (eds) Plant and Animal Cells. Process Possibilities, E. Horwood, Chichester, p 149

    Google Scholar 

  171. Fleischaker R (1987) In: Lydersen BK (ed) Large Sclae Cell Culture Technology, Hauser Publs., Munich, p 59

    Google Scholar 

  172. Macmillan JD, Velez D, Miller L, Reuveny S (1987) In: Lydersen BK (ed) Large Scale Cell Culture Technology, Hauser Publ., Münich, p 21

    Google Scholar 

  173. Lehmann J, Vorlop J, Buntermeyer H (1988) In: Spier RE, Griffiths JB (eds) Animal Cell

    Google Scholar 

  174. Wichterle K (1988) Chem. Eng. Sci. 43: 467

    CAS  Google Scholar 

  175. Smith CG, Greenfield PF, Randerson DH (1987) In: Spier RE, Griffiths JB (eds) Modern Approaches to Animal Cell Technology (ESACT/OHOLO Conf.), Butterworth, London, p 316

    Google Scholar 

  176. Robertson B, Ulbrecht JJ (1987) In: Ho CS, Oldshue JY (eds) Biotechnology Processes. Scale-up and Mixing, American Institute of Chemical Engineers, New York, p 31

    Google Scholar 

  177. McQueen A, Meihac E, Bailey JE (1987) Biotechnol. Lett. 9: 831

    CAS  Google Scholar 

  178. Hirschel MD, Gruenberg ML (1987) In: Lydersen BK (ed) Large Scale Culture Technology, Hauser Publ., Munich, p 113

    Google Scholar 

  179. Feder J (1987) In: Spier RE, Griffiths JB (eds) Modern Approaches to Animal Cell Technology (ESACT/OHOLO Conf.) Butterworth, London, p 454

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this paper

Cite this paper

Prokop, A., Rosenberg, M.Z. (1989). Bioreactor for mammalian cell culture. In: Vertebrate Cell Culture II and Enzyme Technology. Advances in Biochemical Engineering/Biotechnology, vol 39/1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0051951

Download citation

  • DOI: https://doi.org/10.1007/BFb0051951

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51026-0

  • Online ISBN: 978-3-540-46133-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics