Skip to main content

Parallel simulation of turbulent fluid flow in a mixing tank

  • 1. Industrial and General Applications
  • Conference paper
  • First Online:
High-Performance Computing and Networking (HPCN-Europe 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1401))

Included in the following conference series:

Abstract

The efficiency of operating stirred tanks, which are extensively used in industry as mixing devices, is largely dependent on the turbulence characteristics of the impeller driven flow field. In this paper we present results of large eddy simulations on stirred tank flow at Reynolds numbers up to 104 on a 1203 computational grid. Because of its computational efficiency on parallel computer platforms, a lattice-Boltzmann discretization scheme was chosen. The rotating impeller is dealt with by means of an adaptive force field algorithm, which is able to impose (interpolated) velocity values in any point within the computational domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.V. Ranade and J.B. Joshi, Trans IChemE 68 (1990) 34.

    Google Scholar 

  2. A. Bakker and H.E.A. van den Akker, Trans IChemE 72A (1994) 583.

    Google Scholar 

  3. V.V. Ranade and S.M.S. Dommeti Trans IChemE 74A (1996) 476.

    Google Scholar 

  4. A. Brucato, M. Ciofalo, F. Grisafi and G. Micale, IChemE Symposium Series No. 136 (1994) 155.

    Google Scholar 

  5. J.Y. Murthy, S.R. Mathur and D. Choudhury, Proc. 8th European Conf. on Mixing (Cambridge UK, 1994) 341.

    Google Scholar 

  6. J.G.M. Eggels, Int. J. Heat and Fluid Flow 17 (1996) 307.

    Google Scholar 

  7. J.A. Somers, Appl. Sc. Res. 51 (1993) 127.

    Google Scholar 

  8. J.G.M. Eggels and J.A. Somers, Int. J. Heat and Fluid Flow 16 (1995) 357.

    Google Scholar 

  9. J. Smagorinski, Mon. Weather Rev. 91 (1963) 99.

    Google Scholar 

  10. U. Piomelli, P. Moin and J.H. Ferziger, Phys. Fluids 31 (1988) 1884.

    Google Scholar 

  11. D. Goldstein, R. Handler and L. Sirovich, J. Comp. Phys. 105 (1993) 354.

    Google Scholar 

  12. J.J. Derksen. J.L. Kooman and H.E.A. van den Akker, Lecture Notes in Computer Science 1225 (1996) 524.

    Google Scholar 

  13. Al Geist et. al., PVM 3 User's Guide and Reference Manual, Oak Ridge National Laboratory (1993).

    Google Scholar 

  14. C.M. Stoots and R.V. Calabrese, AIChE J. 41 (1995) 1.

    Google Scholar 

  15. M. Yianneskis, Z. Popiolek and J.H. Whitelaw, J. Fluid Mech. 175 (1987) 537.

    Google Scholar 

  16. A.D. Harvey III and S.E. Rogers, AIChE J. 42 (1996) 2701.

    Google Scholar 

  17. J.H. Rushton, E.W. Costich and H.J. Everett, Chem. Eng. Prog. 46 (1950) 395.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter Sloot Marian Bubak Bob Hertzberger

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Derksen, J., Van den Akker, H. (1998). Parallel simulation of turbulent fluid flow in a mixing tank. In: Sloot, P., Bubak, M., Hertzberger, B. (eds) High-Performance Computing and Networking. HPCN-Europe 1998. Lecture Notes in Computer Science, vol 1401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0037136

Download citation

  • DOI: https://doi.org/10.1007/BFb0037136

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64443-9

  • Online ISBN: 978-3-540-69783-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics