Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 384))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Peters, N., “Numerical and Asymptotic Analysis of Systematically Reduced Reaction Schemes for Hydrocarbon Flames,” in Numerical Simulation of Combustion Phenomena, R. Glowinski et al., Eds., Lecture Notes in Physics, Springer-Verlag, (1985), p. 90.

    Google Scholar 

  2. Peters, N. and Kee, R. J., “The Computation of Stretched Laminar Methane-Air Diffusion Flames Using a Reduced Four-Step Mechanism,” Comb. and Flame, 68, (1987), p. 17.

    Google Scholar 

  3. Peters, N. and Williams, F. A., “The Asymptotic Structure of Stoichiometric Methane Air Flames,” Comb. and Flame, 68, (1987), p. 185.

    Google Scholar 

  4. Bilger, R. W., Starner, S. H. and Kee, R. J., “On Reduced Mechanisms for Methane-Air Combustion in Non-Premixed Flames,” to appear in Comb. and Flame, (1990).

    Google Scholar 

  5. Spalding, D. B., “The Theory of Flame Phenomena with a Chain Reaction,” Phil. Trans. Roy. Soc. London, 249A (1956), p. 1.

    Google Scholar 

  6. Adams, G. K. and Cook, G. B., “Mechanism and Speed of the Hydrazine Decomposition Flame,” Comb. and Flame, 4 (1960), p. 9.

    Google Scholar 

  7. Dixon-Lewis, G., “Flame Structure and Flame Reaction Kinetics I. Solution of Conservation Equations and Application to Rich Hydrogen-Oxygen Flames,” Proc. Roy. Soc. London, 298A, (1967), p. 495.

    Google Scholar 

  8. Dixon-Lewis, G., “Kinetic Mechanism, Structure, and Properties of Premixed Flames in Hydrogen-Oxygen-Nitrogen Mixtures,” Phil. Trans. of the Royal Soc. London, 292, (1979), p. 45.

    Google Scholar 

  9. Spalding, D. B., Stephenson D. L. and Taylor, R. G., “A Calculation Procedure for the Prediction of Laminar Flame Speeds,” Comb. and Flame., 17, (1971), p. 55.

    Google Scholar 

  10. Wilde, K. A., “Boundary-Value Solutions of the One-Dimensional Laminar Flame Propagation Equations,” Comb. and Flame, 18, (1972), p. 43.

    Google Scholar 

  11. Bledjian, L., “Computation of Time-Dependent Laminar Flame Structure,” Comb. and Flame, 20, (1973) p. 5.

    Google Scholar 

  12. Margolis, S. B., “Time-Dependent Solution of a Premixed Laminar Flame,” J. Comp. Phys., 27, (1978), p. 410.

    Google Scholar 

  13. Warnatz, J., “Calculation of the Structure of Laminar Flat Flames I; Flame Velocity of Freely Propagating Ozone Decomposition Flames,” Ber. Bunsenges. Phys. Chem., 82, (1978), p. 193.

    Google Scholar 

  14. Warnatz, J., “Calculation of the Structure of Laminar Flat Flames II; Flame Velocity and Structure of Freely Propagating Hydrogen-Oxygen and Hydrogen-Air-Flames,” Ber. Bunsenges. Phys. Chem., 82, (1978), p. 643.

    Google Scholar 

  15. Warnatz, J., “Calculation of the Structure of Laminar Flat Flames III; Structure of Burner-Stabilized Hydrogen-Oxygen and Hydrogen-Fluorine Flames,” Ber. Bunsenges. Phys. Chem., 82, (1978), p. 834.

    Google Scholar 

  16. Westbrook C. K. and Dryer, F. L., “A Comprehensive Mechanism for Methanol Oxidation,” Comb. Sci. and Tech., 20, (1979), p. 125.

    Google Scholar 

  17. Westbrook, C. K. and Dryer, F. L., “Prediction of Laminar Flame Properties of Methanol Air Mixtures,” Comb. and Flame, 37, (1980), p. 171.

    Google Scholar 

  18. Coffee T. P. and Heimerl, J. M., “The Detailed Modeling of Premixed, Laminar Steady-State-Flames. I. Ozone,” Comb. and Flame, 39, (1980) p. 301.

    Google Scholar 

  19. Coffee, T. P. and Heimerl, J. M., “Transport Algorithms for Premixed, Laminar, Steady-State Flames,” Comb. and Flame, 43, (1981), p. 273.

    Google Scholar 

  20. Miller, J. A., Mitchell, R. E., Smooke, M. D., and Kee, R. J., “Toward a Comprehensive Chemical Kinetic Mechanism for the Oxidation of Acetylene: Comparison of Model Predictions with Results from Flame and Shock Tube Experiments,” Nine-teenth Symposium (International) on Combustion, Reinhold, New York, (1982), p. 181.

    Google Scholar 

  21. Miller, J. A., Smooke, M. D., Green, R. M. and Kee, R. J., “Kinetic Modeling of the Oxidation of Ammonia in Flames,” Comb. Sci. and Tech., 34, (1983), p. 149.

    Google Scholar 

  22. Miller, J. A., Kee, R. J., Smooke, M. D. and Grcar, J. F., “The Computation of the Structure and Extinction Limit of a Methane-Air Stagnation Point Diffusion Flame,” Paper # WSS/CI 84-10 presented at the 1984 Spring Meeting of the Western States Section of the Combustion Institute, University of Colorado, Boulder, CO, April 2–3, 1984.

    Google Scholar 

  23. Smooke, M. D., “Solution of Burner Stabilized Premixed Laminar Flames by Boundary Value Methods,” J. Comp. Phys., 48, (1982), p. 72.

    Google Scholar 

  24. Smooke, M. D., Miller, J. A. and Kee, R. J., “On the Use of Adaptive Grids in Numerically Calculating Adiabatic Flame Speeds,” Numerical Methods in Laminar Flame Propagation, N. Peters and J. Warnatz (Eds.). Friedr. Vieweg and Sohn, Wiesbaden, (1982).

    Google Scholar 

  25. Smooke, M. D., Miller, J. A. and Kee, R. J., “Determination of Adiabatic Flame Speeds by Boundary Value Methods,” Comb. Sci. and Tech., 34, (1983), p. 79.

    Google Scholar 

  26. Smooke, M. D., Miller, J. A. and Kee, R. J., “Solution of Premixed and Counterflow Diffusion Flame Problems by Adaptive Boundary Value Methods,” Numerical Boundary Value ODEs, U. M. Ascher and R. D. Russell, eds., Birkhäuser, Boston, (1985), p. 303.

    Google Scholar 

  27. Smooke, M. D., “On the Use of Adaptive Grids in Premixed Combustion,” AIChE J., 32, (1986), p. 1233.

    Google Scholar 

  28. Hahn, W. A. and Wendt, J. O. L., “NOx Formation in Flat, Laminar, Opposed Jet Methane Diffusion Flames,” Eighteenth Symposium (International) on Combustion, Reinhold, New York, (1981), p. 121.

    Google Scholar 

  29. Sato, J. and Tsuji, H., “Extinction of Premixed Flames in a Stagnation Flow Considering General Lewis Number,” Comb. Sci. and Tech., 33, (1983), p. 193.

    Google Scholar 

  30. Dixon-Lewis, G., David, T., Haskell, P. H., Fukutani, S., Jinno, H., Miller, J. A., Kee, R. J., Smooke, M. D., Peters, N., Effelsberg, E., Warnatz, J. and Behrendt, F., “Calculation of the Structure and Extinction Limit of a Methane-Air Counterflow Diffusion Flame in the Forward Stagnation Region of a Porous Cylinder,” Twentieth Symposium (International) on Combustion, Reinhold, New York, (1985), p. 1893.

    Google Scholar 

  31. Giovangigli, V. and Smooke, M. D., “Extinction of Strained Premixed Laminar Flames with Complex Chemistry,” Comb. Sci. and Tech., 53, (1987), p. 23.

    Google Scholar 

  32. Williams, F. A., “Recent Advances in Theoretical Descriptions of Turbulent Diffusion Flames,” in Turbulent Mixing in Non-Reactive and Reactive Flows, S. N. B. Murthy, ed., Plenum Press, New York, (1975), p. 189.

    Google Scholar 

  33. Peters, N., “Laminar Diffusion Flamelet Models in Non-premixed Turbulent Combustion,” Prog. Energy Comb. Sci. 10, (1984), p. 319.

    Google Scholar 

  34. Liew, S. K., Bray, K. N. C. and Moss, J. B., “A Flamelet Model of Turbulent Non-Premixed Combustion,” Comb. Sci. and Tech., 27, (1981), p. 69.

    Google Scholar 

  35. Mew, S. K., Bray, K. N. C. and Moss, J. B., “A Stretched Laminar Flamelet Model of Turbulent Nonpremixed Combustion,” Comb. and Flame, 56, (1984), p. 199.

    Google Scholar 

  36. Rogg, B., Behrendt, F. and Warnatz, J., “Turbulent Non-Premixed Combustion in Partially Premixed Diffusion Flamelets with Detailed Chemistry,” Twenty-First Symposium (International) on Combustion, Reinhold, New York, (1986), p. 1533.

    Google Scholar 

  37. Tsuji, H. and Yamaoka, I., “The Counterflow Diffusion Flame in the Forward Stagnation Region of a Porous Cylinder,” Eleventh Symposium (International) on Combustion, Reinhold, New York, (1967), p. 979.

    Google Scholar 

  38. Tsuji, H. and Yamaoka, I., “The Structure of Counterflow Diffusion Flames in the Forward Stagnation Region of a Porous Cylinder,” Twelfth Symposium (International) on Combustion, Reinhold, New York, (1969), p. 997.

    Google Scholar 

  39. Tsuji, H. and Yamaoka, I., “Structure Analysis of Counterflow Diffusion Flames in the Forward Stagnation Region of a Porous Cylinder,” Thirteenth Symposium (International) on Combustion, Reinhold, New York, (1971), p. 723.

    Google Scholar 

  40. Tsuji, H., “Counterflow Diffusion Flames,” Progress in Energy and Comb., 8, (1982), p. 93

    Google Scholar 

  41. Smooke, M. D., Puri, I. K. and Seshadri, K., “A Comparison Between Numerical Calculations and Experimental Measurements of the Structure of a Counterflow Diffusion Flame Burning Diluted Methane in Diluted Air,” Twenty-First Symposium (International), (1986), p. 1783.

    Google Scholar 

  42. Curtiss, C. F. and Hirschfelder, J. O., “Transport Properties of Multicomponent Gas Mixtures,” J. Chem. Phys., 17, (1949), p. 550.

    Google Scholar 

  43. Kee, R. J., Miller, J. A. and Jefferson, T. H., “CHEMKIN: A General-Purpose, Transportable, Fortran Chemical Kinetics Code Package,” Sandia National Laboratories Report, SAND80-8003, (1980).

    Google Scholar 

  44. Kee, R. J., Warnatz, J., and Miller, J. A., “A Fortran Computer Code Package for the Evaluation of Gas-Phase Viscosities, Conductivities, and Diffusion Coefficients,” Sandia National Laboratories Report, SAND83-8209, (1983).

    Google Scholar 

  45. Giovangigli, V. and Smooke, M. D., “Application of Continuation Methods to Premixed Laminar Flames,” submitted to Comb. Sci. and Tech., (1990).

    Google Scholar 

  46. Warnatz, J., “The Mechanism of High Temperature Combustion of Propane and Butane,” Comb. Sci. and Tech. 34, (1983), p. 177.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mitchell D. Smooke

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag

About this chapter

Cite this chapter

Smoke, M.D., Giovangigli, V. (1991). Formulation of the premixed and nonpremixed test problems. In: Smooke, M.D. (eds) Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames. Lecture Notes in Physics, vol 384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0035363

Download citation

  • DOI: https://doi.org/10.1007/BFb0035363

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54210-0

  • Online ISBN: 978-3-540-47496-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics