Skip to main content

Barnacle muscle: Ca2+, activation and mechanics

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 122

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 122))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams SR, Kao JPY, Tsien RY (1986) Photolabile chelators that “cage” calcium with improved speed of release and pre-photolysis affinity. J Gen Physiol 88:9a–10a

    Google Scholar 

  • Adams SR, Kao JPY, Grynkiewicz G, Minta A, Tsien RY (1988) Biologically useful chelators that release Ca2+ upon illumination. J Am Chem Soc 110:3212–3220

    CAS  Google Scholar 

  • Adams SR, Kao JPY, Tsien RY (1989) Biological useful chelators that take up Ca2+ upon illumination. J Am Chem Soc 111:7957–7968

    CAS  Google Scholar 

  • Aickin CC, Thomas RC (1975) Micro-electrode measurements of the internal pH of crab muscle fibres. J Physiol (Lond) 252:803–815

    CAS  PubMed Central  PubMed  Google Scholar 

  • Allen DG, Blinks JR (1978) Calcium transients on aequorin-injected cardiac muscle. Nature 273:509–513

    CAS  PubMed  Google Scholar 

  • Allen DG, Blinks JR, Prendergast FG (1977) Aequorin luminescence: relation of light emission to calcium concentration — a calcium-independent component. Science NY 195:996–998

    CAS  Google Scholar 

  • Allen J, Baker PF (1986) Comparison of the effects of potassium and membrane potential on the Ca-dependent Na efflux in squid axons. J Physiol (Lond) 378:53–76

    CAS  PubMed Central  PubMed  Google Scholar 

  • Altamairano A, Hamilton SL, Russell JM (1988) A plasma membrane-enriched preparation from giant barnacle muscle fibres. Anal Biochem 172:203–209

    Google Scholar 

  • Arispe N, Olivares E, Jaimovich E, Rojas E (1992) Screening of ryanodine sensitive channels in sarcoplasmic reticulum vesicles from crustacean muscle Biophys. J. 61:A24.

    Google Scholar 

  • Ashley CC (1967) The role of cell calcium in the contraction of single cannulated muscle fibres. Am Zool 7(3):647–690

    CAS  PubMed  Google Scholar 

  • Ashley CC (1970) An estimate of calcium concentration changes during the contraction of single muscle fibres. J Physiol (Lond) 210:133–134P

    Google Scholar 

  • Ashley CC (1978) Calcium ion regulation in barnacle muscle fibers and its relation to force development. Ann N Y Acad Sci 307:308–329

    CAS  PubMed  Google Scholar 

  • Ashley CC (1983) Calcium in Muscle. In: Spiro TG (ed) Calcium in biology. Wiley, New York; pp 109–173

    Google Scholar 

  • Ashley CC, Caldwell PC (1974) Calcium movements in relation to contraction. Biochem Soc Symp 39:29–50

    CAS  PubMed  Google Scholar 

  • Ashley CC, Campbell AK (1978) Calcium transients in barnacle muscle induced by the putative excitatory transmitter L-glutamate. Biochim Biophys Acta 512:429–435

    CAS  PubMed  Google Scholar 

  • Ashley CC, Campbell AK (1979) Detection and measurement of free Ca2+ in Cells. Elsevier/North Holland Biomedical, Amsterdam

    Google Scholar 

  • Ashley CC, DeClerck NM (1981) The effect of anaesthetics upon the relative isometric tension-pCa relation of bundles of barnacle myofibrils. J Physiol (Lond) 315:15–16P

    Google Scholar 

  • Ashley CC, Ellory JC (1972) The efflux of magnesium from single crustacean muscle fibres. J Physiol (Lond) 226:653–674

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ashley CC, Griffiths PJ (1983) The effect of injecting parvalbumins into single muscle fibres from the barnacle Balanus nubilus. J Physiol (Lond) 345: 105P

    Google Scholar 

  • Ashley CC, Griffiths, PJ (1984) Potentiation of contraction by AR-L 115 BS in striated muscle fibre from the barnacle Balanus nubilus. J Physiol (Lond) 360:8P

    Google Scholar 

  • Ashley CC, Lea TJ (1976) The influx of labelled amino-acids into single muscle fibres. J Physiol (Lond) 259:43–44P

    Google Scholar 

  • Ashley CC, Lea TJ (1978) Calcium fluxes in single muscle fibres measured with a glass scintillator probe. J Physiol (Lond) 282:307–331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ashley CC, Lignon J (1981) Aequorin responses during relaxation of tension of single muscle fibres stimulated by voltage clamp. J Physiol (Lond) 318:10–11P

    Google Scholar 

  • Ashley CC, Moisescu DG (1972a) Model for the action of calcium in muscle. Nature [New Biol] 237:208–211

    CAS  Google Scholar 

  • Ashley CC, Moisescu DG (1972b) Tension changes in isolated muscle fibres as predicted by the free calcium concentration. J Physiol (Lond) 226:82–84P

    Google Scholar 

  • Ashley CC, Moisescu DG (1973a) Tension changes in isolated bundles of frog and barnacle myofibrils in response to sudden changes in the external free calcium concentration. J Physiol (Lond) 233:8–9P

    Google Scholar 

  • Ashley CC, Moisescu DG (1973b) The mechanism of the free calcium change in single muscle fibres. J Physiol (Lond) 231:23–25P

    Google Scholar 

  • Ashley CC, Moisescu DG (1974) The influence of Mg2+ concentration and of pH upon the relationship between steady-state isometric tension and Ca2+ concentration in isolated bundles of barnacle myofibrils. J Physiol (Lond) 239:112–114P

    Google Scholar 

  • Ashley CC, Moisescu DG (1975) The part played by Ca2+ in the contraction of isolated bundles of myofibrils. In: Carafoli E et al (eds) Calcium transport in contraction and secretion. North-Holland, Amsterdam; pp 517–525

    Google Scholar 

  • Ashley CC, Moisescu DG (1977) Effects of changing the composition of the bathing solutions upon the isometric tension-pCa relationship in bundles of crustacean myofibrils. J Physiol (Lond) 270:627–652

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ashley CC, Ridgway EB (1968) Aspects of the relationship between membrane potential calcium transient and tension in single barnacle muscle fibres. J Physiol (Lond) 200:74–76P

    Google Scholar 

  • Ashley CC, Ridgway EB (1968) Simultaneous recording of membrane potential, calcium transient and tension in single muscle fibres. Nature (Lond) 219:1168–1169

    CAS  PubMed  Google Scholar 

  • Ashley CC, Ridgway EB (1970) On the relationship between membrane potential, calcium transient and tension in single barnacle muscle fibres. J Physiol (Lond) 209:105–130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ashley CC, Caldwell PC, Lowe AG, Richards CD, Schirmer H (1965) The amount of injected EGTA needed to suppress the contractile responses of single Maia muscle fibres and its relation to the amount of calcium released during contraction. J Physiol (Lond) 179:32–33P

    Google Scholar 

  • Ashley CC, Caldwell PC, Lowe AG (1972) The efflux of calcium from single crab and barnacle muscle fibres. J Physiol (Lond) 223:733–755

    Google Scholar 

  • Ashley CC, Ellory JC, Hainaut K (1974a) Calcium movements in single crustacean muscle fibres. J Physiol (Lond) 242:255–272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ashley CC, Moisescu DG, Rose RM (1974b) Aequorin-light and tension responses from bundles of myofibrils following a sudden change in free Ca2+. J Physiol (Lond) 241:104–106P

    Google Scholar 

  • Ashley CC, Moisescu DG, Rose RM (1974c) Kinetics of calcium during contraction: myofibrillar and SR fluxes during a single response of a skeletal muscle fibre. In: Drabikowski W et al. (eds) Calcium binding proteins Elsevier, Amsterdam; pp 609–642

    Google Scholar 

  • Ashley CC, Griffiths PJ, Moisescu DG, Rose RM (1974d) The use of aequorin and the isolated myofibrillar bundle preparation to investigate the effect of SR calcium releasing agents. J Physiol (Lond) 245:12–14P

    Google Scholar 

  • Ashley CC, Griffiths, PJ, Moisescu DG, Rose RM (1974e) A method for injecting aequorin into large muscle fibres using a micropipette. J Physiol (Lond) 245:11–21P

    Google Scholar 

  • Ashley CC, Ellory JC, Griffiths PJ (1977) Caffeine and the contractility of single muscle fibres from the barnacle Balanus nubilus. J Physiol (Lond) 269:421–439

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ashley CC, Ellory JC, Lea TJ, Ramos M (1978) The effects of inhibitors on 36Cl efflux from barnacle muscle fibres. J Physiol (Lond) 285:52–53

    Google Scholar 

  • Ashley CC, Rink TJ, Tsien RY (1978) Changes in free calcium during muscle contraction, measured with an intracellular Ca-sensitive electrode. J Physiol (Lond) 242:735–755

    Google Scholar 

  • Ashley CC, Franciolini F, Lea TJ, Lignon J (1979) Effect of carbon dioxide on calcium transient and tension responses from fibres of the barnacle, Balanus nubilus. J Physiol (Lond) 296:71P

    Google Scholar 

  • Ashley CC, Godber JF, Walton A (1984) Microscope image-intensifier studies on single quin 2-loaded muscle fibres from the barnacle Balanus nubilus. J Physiol (Lond) 358:8P

    Google Scholar 

  • Ashley CC, Griffiths PJ, Potter JD (1984) Force potentiation as examined by aequorin luminescence, labelled troponin C fluorescence in single voltage-clamped muscle fibres from the barnacle Balanus nubilus. J Physiol (Lond) 358:76P

    Google Scholar 

  • Ashley CC, Griffiths PJ, Rakowski RF (1986a) Gating current in giant barnacle (Balanus nubilus) muscle fibres. J Physiol (Lond) 371:268P

    Google Scholar 

  • Ashley CC, Griffiths PJ, Strang PF, Potter JD (1986b) Ca2+ transients detected by TnC-IAANS fluorescence in single B. nubilus muscle fibres. Biophys J 49: 250a

    Google Scholar 

  • Ashley CC, Barsotti RJ, Ferenczi MA, Lea TJ, Mulligan IP (1987a) Fast activation of skinned muscle fibres from the frog by photolysis of caged-calcium. J Physiol (Lond) 394: 24P

    Google Scholar 

  • Ashley CC, Barsotti RJ, Ferenczi MA, Lea TJ, Mulligan IP, Tsien RY (1987b) Caged-calcium photolysis activates demembranated muscle fibres from the rabbit. J Physiol (Lond) 390: 144P

    Google Scholar 

  • Ashley CC, Griffiths PJ, Stoneham N (1987c) Stiffness and tension measurements during ATP deprivation in skinned muscle fibres of Balanus nubilus. J Physiol (Lond) 386:85P

    Google Scholar 

  • Ashley CC, Kerrick WG, Lea TJ, Khalil R, Potter JD (1987d) Reconstitution of the calcium regulatory responses in TnC-depleted, skinned muscle fibres from the rabbit and barnacle Balanus nubilus. Biophys J 51:327a

    Google Scholar 

  • Ashley CC, Barsotti RJ, Ferenczi MA, Lea TJ, Mulligan IP (1988a) Simultaneous photolysis of ‘caged ATP’ and calcium in permeabilised single muscle fibres from the frog. J Physiol (Lond), 398: 71P

    Google Scholar 

  • Ashley CC, Griffiths PJ, Potter JM (1988b) The mobility of TnCDANZ following injection into barnacle muscle fibres. J Physiol (Lond) 399: 20P

    Google Scholar 

  • Ashley CC, Griffiths PJ, Hodgson S (1988c) Weakly attached states in myofibrillar bundles from Balanus nubilus. J Physiol (Lond) 407:77P

    Google Scholar 

  • Ashley CC, Lea TJ, Mulligan IP, Timmerman MP (1989a) Calcium-induced calcium release from the sarcoplasmic reticulum of Balanus striated muscle using laser-induced photolysis of Nitr-5. J Physiol (Lond) 414:50P

    Google Scholar 

  • Ashley CC, Barsotti RJ, Ferenczi MA, Lea TJ (1989b) Thin filament activation by photolysis of caged calcium in skinned muscle fibres. In: Reid E, Cook GMW, Luzio JP (eds) Biochemical approaches to cellular calcium, vol 19. London: Chemical Society; pp 131–132

    Google Scholar 

  • Ashley CC, Mulligan IP, Palmer RE (1990) ADP slows the relaxation of single permeabilised muscle fibres from frog following flash photolysis of the caged Ca2+ chelator, Diazo-2. J Physiol (Lond) 462:31P

    Google Scholar 

  • Ashley CC, Mulligan IP, Lea TJ (1991a) Ca2+ and activation mechanism in skeletal muscle. Q Rev Biophys 24:1–73

    CAS  PubMed  Google Scholar 

  • Ashley CC, Lea TJ, Hoar PE, Kerrick WGL, Strang PF, Potter JD (1991b) Functional characterisation of the two isoforms of troponin C from the arthropod, Balanus nubilus. J Muscle Res Cell Motil 12(6):532–542

    CAS  PubMed  Google Scholar 

  • Atwater I, Rojas E, Vergara J (1974) Calcium influxes and tension development in perfused single barnacle muscle fibres under membrane potential control. J Physiol (Lond) 243:523–551

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bacigalupo J, Loxoro M, Risetti S, Vergara C (1979) Extracellular space and diffusion barriers in muscle fibres from Megabalanus psittacus (Darwin). J Physiol (Lond) 288:301–312

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baker PF (1972) Transport and metabolism of calcium ions in nerve. Prog Biophys Mol Biol 24:177–223

    CAS  PubMed  Google Scholar 

  • Baker PF, Carruthers A (1983) Insulin regulation of sugar transport in giant muscle fibres of the barnacle. J Physiol (Lond) 336:397–431

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baker PF, Hodgkin AL, Ridgway EB (1971) Depolarization and calcium entry in squid. J Physiol (Lond) 218:709–755

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baylor SM, Chandler WK, Marshall MW (1983) Sarcoplasmic reticulum Ca2+ release in frog skeletal muscle fibres estimated from ASIII calcium transients. J Physiol (Lond) 344:625–666

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321

    CAS  PubMed  Google Scholar 

  • Beuckelmann DJ, Weir G (1989) Sodium-calcium exchange in guinea-pig cardiac cells: exchange current and changes in intracellular Ca2+. J Physiol (Lond) 414:499–520

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bittar EE, Hift H, Huddart H, Tonge E (1974) The effects of caffeine on sodium transport, membrane potential, mechanical tension and ultrastructure in barnacle muscle fibres. J Physiol (Lond) 242:1–34

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blaustein MP, Goldman WF, Fontana G, Krueger BK, Santiago EM, Steele TD, Weiss DN, Yarawsky PJ (1991) Physiological roles of the sodium-calcium exchange in nerve and muscle. Ann NY Acad Sci USA 639:254–274

    CAS  Google Scholar 

  • Blinks JR, Rudel R, Taylor SR (1978) Calcium transients in isolated muscle fibres: detection with aequorin. J Physiol (Lond) 277:291–323

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blinks JR, Weir G, Hess P, Prendergast FG (1982) Measurement of Ca2+ in living cells. Prog Biophys Mol Biol 40:1–114

    CAS  PubMed  Google Scholar 

  • Block BA, Imagawa T, Campbell KP, Franzini-Armstrong C (1988) Structural evidence for direct interaction between the molecular components of the transverse tubule/SR junction in skeletal muscle. J Cell Biol 107:2587–2600

    CAS  PubMed  Google Scholar 

  • Boron WF (1977) Intracellular pH transients in giant barnacle muscle fibers. Am J Physiol 233:C61–C73

    CAS  PubMed  Google Scholar 

  • Boron WF, Russell JM, Brodwick MS, Weifer DW, Roos A (1978) Influence of cyclic AMP on intracellular pH regulation and chloride fluxes in barnacle muscle fibres Nature 276:511–513

    CAS  PubMed  Google Scholar 

  • Brandt PW, Cox RN, Kawai M (1980) Can the binding of Ca2+ to two regulatory sites on troponin C determine the steep pCa/tension relationship of skeletal muscle? Proc Natl Acad Sci USA 77:4717–4720

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brandt PW, Diamond MS, Rutchik JS (1987) Co-operative interactions between troponintropomyosin units extend the length of the thin filament in skeletal muscle. J Mol Biol 195:885–896

    CAS  PubMed  Google Scholar 

  • Bremel RD, Weber A (1972) Cooperative behaviour within the functional unit of the actin filament in vertebrate skeletal muscle. Nature (New Biol) 238:97–101

    CAS  Google Scholar 

  • Brinley FJ (1968) Sodium and potassium fluxes in isolated muscle fibers. J Gen Physiol 51:445–477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brinley FJ, Scarpa A, Tiffert T (1977) The concentration of ionized magnesium in barnacle muscle fibres. J Physiol (Lond) 266:545–565

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brum G, Stefani E, Rios E (1986) Simultaneous measurements of Ca2+ currents, and intracellular Ca2+ concentrations in single skeletal muscle fibers of the frog. Can J Physiol Pharmacol 65:681–685

    Google Scholar 

  • Caldwell PC (1958) Studies on the internal pH of large muscle and nerve fibres. J Physiol (Lond) 142:22–62

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caldwell PC (1964) Calcium and the contraction of Maia muscle fibres. Proc Roy Soc B 160:512–516

    CAS  Google Scholar 

  • Caldwell PC, Walster GE (1963) Studies on the micro-injection of various substances into crab muscle fibres. J Physiol (Lond) 169:353–372

    CAS  PubMed Central  PubMed  Google Scholar 

  • Campbell AK, Lea TJ, Ashley CC (1979) Coelenterate photoproteins. In: Ashley CC, Campbell AK (eds) Detection and measurement of free Ca2+ in cells. Elsevier/North-Holland, Amsterdam, pp 13–72

    Google Scholar 

  • Cannell MB (1986) Effect of tetanus devation on the free calcium during the relaxation of frog skeletal muscle fibres. J Physiol (Lond) 376:203–218

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cannell MB, Allen DG (1984) Model of calcium movements during activation in the sarcomere of frog skeletal muscle. Biophys J 45:913–925

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caputo C (1973) Sodium-dependent calcium influx in dialysed barnacle muscle fibers. Biochim Biophys Acta 298:279–283

    Google Scholar 

  • Caputo C, Dipolo R (1975) Calcium and contractile activation in barnacle muscle fibres. In: Carafoli E et al (eds) Calcium transport in contraction and secretion. Elsevier/North-Holland, Amsterdam, pp 527–534

    Google Scholar 

  • Caputo C, Dipolo R (1978) Contractile activation phenemena in voltage clamped barnacle muscle fibre. J Gen Physiol 71:467–488

    CAS  PubMed  Google Scholar 

  • Carruthers A (1983) Sugar transport in giant barnacle fibres. J Physiol (Lond) 336:397–431

    PubMed Central  PubMed  Google Scholar 

  • Castellani L, Franzini-Armstrong C, Loesser K (1989) Shape, size and disposition of feet in junctions between transverse tubules and sarcoplasmic reticulum of Bivabria, Insecta, Crustacea and Arachnida. J Physiol (Lond) 418:118P

    Google Scholar 

  • Cecchi G, Lombardi V, Colomo F (1978) Force-velocity relation in normal and nitratetreated frog muscle fibres during the rise of tension in an isometric tetanus. J Physiol (Lond) 285:257–273

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cecchi G, Bagni MA, Griffiths PJ, Ashley CC, Maeda Y (1990) Detection of radial crossbridge force by lattice spacing changes in intact single muscle fibres. Science NY 250:1409–1411

    CAS  Google Scholar 

  • Cecchi G, Griffiths PJ, Bagni MA, Ashley CC, Maeda Y (1991) Time resolved changes in equatorial X-ray diffraction and stiffness during rise of tetanic tension in intact length-clamped single muscle fibres. Biophys J 59:1273–1283

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chandler WK, Rakowski RF, Schneider MF (1976) A non-linear voltage dependent charge movement in frog skeletal muscle. J Physiol (Lond) 254:245–283

    CAS  PubMed Central  PubMed  Google Scholar 

  • Collins JH, Theibert JL, Francois J-M, Ashley CC, Potter JD (1991) Amino-acid sequences and Ca2+ binding properties of two isoforms of barnacle troponin C. Biochemistry 30:702–707

    CAS  PubMed  Google Scholar 

  • Compagnon D, Lagos N, Vergara J (1989) Metabolic support for a chemical mechanism of E-C coupling in barnacle muscle fibres. Biophy J 55:87a

    Google Scholar 

  • Danielson BG, Bittar EE, Chen S, Tong E (1971) The influence of low pHo, high K and microinjected CaCl2 on the ouabain-insensitive component of sodium efflux in barnacle muscle fibre. Life Sciences 10:833–839

    CAS  Google Scholar 

  • Desmedt JE, Hainaut K (1977) Inhibition of the intracellular release of calcium by Dantrolene in barnacle giant muscle fibres. J Physiol (Lond) 265:565–585

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dipolo R (1972) Chloride fluxes in isolated dialyzed barnacle muscle fibres. J Gen Physiol 60:471–497

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dipolo R (1973) Sodium-dependent Ca2+ influx in dialysed barnacle fibres. Biochim Biophys Acta 298:279–283

    CAS  PubMed  Google Scholar 

  • Dubyak G (1986) The inhibition of tension development and actomyosin ATPase in barnacle muscle by the Ca2+-indicator arsenazo III. J Muscle Res Cell Motil 6:275–292

    Google Scholar 

  • Dubyak G, Scarpa A (1982) Sarcoplasmic Ca2+ transients during the contractile cycle of single barnacle muscle fibers measurements with arsenazo III injected fibres. J Muscle Res Cell Motil 3:87–112

    CAS  PubMed  Google Scholar 

  • Dubyak G, Scarpa A (1983) Phosphorus-31 nuclear magnetic resonance studies of single muscle cells isolated from the barnacle depressor muscle. Biochemistry 22:3531–3536

    CAS  PubMed  Google Scholar 

  • Eastwood AB, Franzini-Armstrong C, Peracchia C (1982) Structure of membranes in crayfish muscle: comparison of phasic and tonic fibres. J Muscle Res Cell Motil 3:273–294

    CAS  PubMed  Google Scholar 

  • Edman KAP, Flitney FW (1978) Laser diffraction studies of sarcomere dynamics during “isometric” relaxation in isolated muscle fibres of the frog. J Physiol (Lond) 329:1–20

    Google Scholar 

  • Edwards C, Lorkovic H (1967) The role of Ca2+ in excitation-contraction coupling in various muscles of the frog, mouse and barnacle. Am Zool 7:615–622

    CAS  PubMed  Google Scholar 

  • Edwards C, Chichibu S, Hagiwara S (1964) Relation between membrane potential changes and tension in barnacle muscle fibres. J Gen Physiol 48:225–234

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ellis-Davies GCR, Kaplan JH (1988) A new class of photolabile chelators for the rapid release of divalent cations: generation of caged Ca2+ and caged Mg2+. J Org chem 53:1966–1969

    CAS  Google Scholar 

  • Endo M (1973) Length dependence of activation of skinned muscle fibres by calcium. Cold Spring Harbor Symp Quant Biol 37:505–510

    CAS  Google Scholar 

  • Endo M (1977) Calcium release from the sarcoplasmic reticulum. Physiol Rev 57:71–108

    CAS  PubMed  Google Scholar 

  • Endo M, Iino M (1980) Specific perforation of muscle cell membranes with preserved SR function by saponin treatment. J Muscle Res Cell Motil 1:89–100

    CAS  PubMed  Google Scholar 

  • Endo M, Tanaka M, Ogawa Y (1970) Ca-induced Ca release from the sarcoplasmic reticulum of skinned skeletal muscle fibers. Nature 228:34–36

    CAS  PubMed  Google Scholar 

  • Engels J, Schlaeger EJ (1977) Synthesis, structure and reactivity of adenosine cyclic 3′,5′-phosphate benzyl triesters. J Med Chem 20:907–911

    CAS  PubMed  Google Scholar 

  • Fahrenbach, WH (1965) Sarcoplasmic reticulum: Structure of the triadic junction Science NY 147:1308–1309

    CAS  Google Scholar 

  • Falk G, Fatt P (1964) Linear electrical properties of striated muscle fibres observed with intracellular electrodes Proc. Roy Soc (Lond) B160:69–123

    Google Scholar 

  • Fatt P, Ginsburg BL (1958) The ionic requirements for the production of action potentials in crustacean muscle fibres. J Physiol (Lond) 142:516–543

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fatt P, Katz B (1953) The electrical properties of crustacean muscles. J Physiol (Lond) 120:171–204

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fleischer S, Ogunbunni EM, Dixon MC, Fleer EA (1985) Localisation of Ca2+ release channels with ryanodine in junctional terminal cristernae of SR of fast skeletal muscle. Proc Natl Acad Sci USA 82:7256–7259

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ford LE, Podolsky RJ (1970) Regenerative calcium release within muscle cells. Science NY 167:58–59

    CAS  Google Scholar 

  • Ford LE, Podolsky RJ (1972) Intracellular calcium movements in skinned muscle fibres. J Physiol (Lond) 223:21–33

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ford LE, Huxley AF, Simmons RM (1977) Tension responses to sudden length changes in stimulated frog muscle fibres near slack length. J Physiol (Lond) 269:441–515

    CAS  PubMed Central  PubMed  Google Scholar 

  • Formelova J, Hurnak O, Novotova M, Zachar J (1990) Ryanodine receptor purified from crayfish skeletal muscle. Gen Physiol Biophys 9:445–453

    CAS  PubMed  Google Scholar 

  • Francois J-M, Mandveno A, Ashley CC, Potter JD (1990) The Ca binding properties of isoform 2 of barnacle troponin C. Biophys J 57:151a

    Google Scholar 

  • Franciolini F (1982) External calcium and contractility in single giant muscle fibres. Biochem Biophys Res Commun 108:828–833

    CAS  PubMed  Google Scholar 

  • Franciolini F (1983) External Sr2+ and contractility in single giant muscle fibres of the barnacle. Experientia 40:386–388

    Google Scholar 

  • Fuchs F (1985) The binding of calcium to detergent-extracted rabbit psoas muscle fibres during relaxation and force generation. J Muscle Res Cell Motil 6:477–486

    CAS  PubMed  Google Scholar 

  • Garcia AM, Lennan AM, Hidalgo C (1975) Sarcoplasmic reticulum from barnacle muscle: composition and calcium uptake properties. FEBS Lett 58:344–348

    CAS  PubMed  Google Scholar 

  • Garcia J, Pizzaro G, Rios E, Stefani E (1990) Depletion of the SR reduces the delayed charge movement of frog skeletal muscle. Biophys J 57:341a

    Google Scholar 

  • Gayton DC, Elliott GF (1980) Structural and osmotic studies of single giant fibres of barnacle muscle. J Muscle Res Cell Motil 1(4):391–407

    Google Scholar 

  • Gillis JM (1985) Relaxation of vertebrate skeletal muscle. A synthesis of the biochemical and physiological approaches. Biochem Biophys Acta 811:97–145

    CAS  PubMed  Google Scholar 

  • Gillis JM, Thomason D, Lefevre J, Kretsinger RH (1982) Parvalbumins and muscle relaxation, a computer stimulation study. J Muscle Res Cell Motil 3:377–398

    CAS  PubMed  Google Scholar 

  • Goblet C, Mounier Y (1986) Calcium-induced Ca release mechanism from the SR in skinned and muscle fibers. Cell Calcium 7:61–72

    CAS  PubMed  Google Scholar 

  • Goldman YE, Simmons RM (1984) Control of sarcomere length in skinned muscle fibres of Rana temporaria during mechanical transients. J Physiol (Lond) 350:497–518

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldman YE, Simmons RM (1986) The stiffness of frog skinned muscle fibres at altered lateral filament spacing. J Physiol (Lond) 378:175–194

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldman YE, Hibberd MG, McCray JA, Trentham DR (1982) Relaxation of muscle fibres by photolysis of caged ATP. Nature 300:701–705

    CAS  PubMed  Google Scholar 

  • Goldman YE, Hibberd MG, Trentham DR (1984) Initiation of active contraction by photogeneration of adenosine 5 triphosphate. J Physiol (Lond) 354:605–624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gordon AM, Ridgway EB (1976) Length-dependent electromechanical coupling in single muscle fibres. J Gen Physiol 69:653–669

    Google Scholar 

  • Gordon AM, Ridgway EB (1978) Calcium transients and relaxation in single muscle fibres. Eur J Cardiol 7:27–34

    PubMed  Google Scholar 

  • Gordon AM, Ridgway EB (1987) Extra calcium on shortening in barnacle muscle: is the decrease in calcium binding related to decreased cross-bridge attachment, force, or length? J Gen Physiol 90:321–340

    CAS  PubMed  Google Scholar 

  • Gordon AM, Ridgway EB (1989) Stretch of active muscle during the declining phase of the Ca transient causes both increased and decreased Ca binding to intracellular Ca binding sites. Biophys J 55:276a

    Google Scholar 

  • Gordon AM, Ridgway EB (1990) Stretch of active muscle during the declining phase of the calcium transient produces biphasic changes in calcium binding to the activating sites. J Gen Physiol 96:1013–1035

    CAS  PubMed  Google Scholar 

  • Gordon AM, Ridgway EB, Yates LD, Allen T (1988) Muscle cross-bridge attachment: effects on calcium binding and calcium activation. In: Sugi H, Pollack G (eds) Molecular mechanisms of muscle contraction. Ad Exp Biol Med 226:89–99

    CAS  Google Scholar 

  • Grabarek Z, Gergely J (1983) On the applicability of Hill type analysis to fluorescence data. J Biol Chem 258:14103–14105

    CAS  PubMed  Google Scholar 

  • Grabarek Z, Grabarek J, Leavis PC, Gergely J (1983) Cooperative binding to the Ca2+-specific sites of troponin C in regulated actin and actomyosin. J Biol Chem 258:14098–14102

    CAS  PubMed  Google Scholar 

  • Griffiths PJ (1990) A neuropeptide-induced contraction of barnacle (Balanus nubilus) single muscle fibres. J Physiol (Lond) 429:120P

    Google Scholar 

  • Griffiths PJ, Lea TJ (1984) The action of D20 on calcium release from the SR in single fibres of the giant barnacle, Balanus nubilus. J Physiol (Lond) 357:56P

    Google Scholar 

  • Griffiths PJ, Kuhn JH, Guth K, Ruegg JC (1979) Rate of isometric tension development in relation to calcium binding of skinned muscle fibres. Pflugers Arch 382:165–170

    CAS  PubMed  Google Scholar 

  • Griffiths PJ, Kuhn JH, Guth K, Ruegg JC (1982) ATPase activity in rapidly activated skinned muscle fibres. Pflugers Arch 387:167–173

    Google Scholar 

  • Griffiths PJ, Potter JD, Coles B, Strang P, Ashley CC (1984) Fluorescence changes from single striated muscle fibres injected with labelled troponin C (TnCDANZ). FEBS Lett 176:144–150

    CAS  PubMed  Google Scholar 

  • Griffiths PJ, Potter JD, Maeda Y, Ashley CC (1988) Transient kinetics and time resolved X-ray diffraction studies in isolated single muscle fibres. Adv Exp Med Biol 226:113–129

    CAS  PubMed  Google Scholar 

  • Griffiths PJ, Duchateau JJ, Maeda Y, Potter JD, Ashley CC (1990) Mechanical characteristics of skinned intact muscle fibres from the giant barnacle, B nubilus. Pflugers Arch 415:554–565

    CAS  PubMed  Google Scholar 

  • Gurney AM, Tsien RY, Lester HA (1987) Activation of a potassium current by rapid photochemically generated step increases of intracellular calcium in rat sympathetic neurones. Proc Natl Acad Sci USA 84:3496–3500

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guth K, Potter JD (1987) Effect of rigor and cycling cross-bridges on the structure of troponin C and on the Ca2+ affinity of the Ca2+-specific regulatory sites in skinned rabbit psoas fibers. J Biol Chem 262:13627–13635

    CAS  PubMed  Google Scholar 

  • Hagiwara S, Naka K (1964) The initiation of spike potential in barnacle muscle fibers under low intracellular Ca2+. J Gen Physiol 48:141–162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hagiwara S, Nakajima S (1966) Effects of the intracellular Ca2+ ion concentration upon the excitability of the muscle fiber membrane of a barnacle. J Gen Physiol 49:807–818

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hagiwara S, Chichibu S, Naka K (1964a) The effects of various ions on resting and spike potentials of barnacle muscle fibers. J Gen Physiol 48:163–179

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hagiwara S, Naka K, Chichibu S (1964b) Membrane properties of barnacle muscle fiber. Science NY 143:1446–1448

    CAS  Google Scholar 

  • Hagiwara S, Takahashi K, Junge D (1968) Excitation-contraction coupling in barnacle muscle fiber as examined with voltage clamp technique. J Gen Physiol 51:157–175

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hagiwara S, Fukuda J, Eaton DC (1974) Membrane currents carried by Ca2+, Sr2+ and Ba2+ in barnacle muscle fiber during voltage clamp. J Gen Physiol 63:564–578

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hasselbach W (1966) Structural enzyme properties of the calcium transporting membranes of the sarcoplasmic reticulum. Ann NY Acad Sci 137:1041–1048

    CAS  PubMed  Google Scholar 

  • Hellam DC, Podolsky RJ (1969) Force measurements in skinned muscle fibres. J Physiol (Lond) 200:807–819

    CAS  PubMed Central  PubMed  Google Scholar 

  • Herzig JW, Feile K, Ruegg JC (1981) Activating effects of AR-L 115 BS on the Ca2+ sensitive force, stiffness and unloaded shortening velocity (Vmax) in isolated contractile structures from mammalian heart muscle. Arzneim-Forsch. Drug. Res. 31:188–191.

    CAS  Google Scholar 

  • Hidalgo J, Jaimovich E (1989) Inositol trisphosphate and E-C coupling in skeletal muscle. J Bioeng Biomembr 21:267–281

    CAS  Google Scholar 

  • Hidalgo J, Luxoro M, Rojas E (1979) On the role of extracellular calcium in triggering contraction in muscle fibres from barnacle under membrane potential control. J Physiol (Lond) 288:313–330

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curve. J Physiol (Lond) 40:4–7

    Google Scholar 

  • Hill AV (1947) On the time required for diffusion and its relation to processes in muscle. Proc Soc [B] 126:446–453

    Google Scholar 

  • Hill TL (1983) Two elementary models for the regulation of skeletal muscle contraction by calcium. Biophys J 44:383–396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hill TL (1985) Co-operativity Theory in Biochemistry. Steady State and Equilibrium Systems. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Hinke JAM (1970) Solvent water for electrolytes in the muscle fibres of the giant barnacle. J Gen Physiol 56:521–541

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hinke JAM, McLaughlin, SGA (1967) Release of bound sodium in single muscle fibres. Can. J Physiol Pharm 45:655

    CAS  Google Scholar 

  • Hofman PA, Fuchs F (1987) Evidence for a force-dependent component of calcium binding to cardiac troponin. C Am J Physiol 253:C541–546

    Google Scholar 

  • Hodgkin AL, Keynes RD (1956) Experiments on the injection of substances into squid giant axons by means of a micro-syringe. J Physiol (Lond) 153:386–403

    Google Scholar 

  • Housman PR, Lee NKM, Blinks JR (1983) Active shortening retards the decline of the intracellular calcium transient in mammalian heart muscle. Science NY 221:159–161

    Google Scholar 

  • Hoyle G, Abbott BC (1967) Dynamic properties of giant muscle fibers of the barnacle. Am Zool 7:611–620

    Google Scholar 

  • Hoyle G, Smyth T (1963) Neuromuscular physiology of giant muscle fibres of a barnacle, Balanus nubilus. Darwin. Comp Biochem Physiol 10:291–314

    CAS  Google Scholar 

  • Hoyle G, McAlear, JH, Selverston A (1965) Mechanism of super contraction in a striated muscle. J Cell Biol 26:621–640

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoyle G, McNeill PA, Selverston AI (1973) Ultrastructure of barnacle giant fibers. J Cell Biol 56:74–91

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Mol Biol 7:255–318

    CAS  Google Scholar 

  • Huxley AF, Simmons RM (1973) Mechanical transients and the origin of muscular force. Cold Spring Harbor Symp Quant Biol 37:669–683

    CAS  Google Scholar 

  • Hwang KS, Godber JF, Lea TF, Ashley CC, Van Breeman C (1987) Ryanodine increases tension as well as aeqorin light in single muscle fibres from B nubilus. Biophys J 57:354a

    Google Scholar 

  • Iwamoto H, Muraoka A, Goto H, Sugi H (1990) Force maintenance with reduced ability to shorten actively in barnacle striated muscle. J Exp Biol 148:281–291

    Google Scholar 

  • Jaimovich E (1991) Chemical transmission of the triad: InSP3? J Muscle Res Cell Motil 12:316–320

    CAS  PubMed  Google Scholar 

  • Johnson JD, Charlton SC, Potter JD (1979) A fluorescence stopped-flow analysis of Ca2+ exchange with troponin-C. J Biol Chem 254:3497–3502

    CAS  PubMed  Google Scholar 

  • Kaczorowski GF, King VF, Garcia ML, Slaughter RS (1989) Inhibitors of sodiumcalcium exchange-identification and development of probes of transport activity. Biochim Biophys Acta 988:287–302

    CAS  PubMed  Google Scholar 

  • Kaminer B, Kimura J (1972) Deuterium oxide: inhibition of calcium release in muscle Science NY 176:406–407

    CAS  Google Scholar 

  • Kaplan J, Ellis-Davies G (1988) Properties and applications of DM-nitrophen, a new caged-Ca2+. Biophys J 53:36a

    Google Scholar 

  • Kaplan JH (1990) Caged compounds: and striated muscle. Ann Rev Physiol 52:875–896

    Google Scholar 

  • Kaplan JH, Forbush III B, Hoffman JF (1978) Rapid photolytic release of adenosine 5-triphosphate from a protected analogue: Utilization by the Na:K pump of human red blood cell ghosts. Biochemistry 17:1929–1935

    CAS  PubMed  Google Scholar 

  • Kawai M, Brandt PW, Orentlicher M (1977) Dependence of energy transduction in intact skeletal muscles on the time in tension. Biophys J 18:161–172

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kawai M, Guth K, Winnikes K, Haist C, Ruegg JC (1987) The effect of inorganic phosphate on the ATP hydrolysis rate and the tension transients in chemically skinned rabbit psoas fibres. Pflugers Arch 408:1–9

    CAS  PubMed  Google Scholar 

  • Kentish JC, Barsotti RJ, Lea TJ, Mulligan IP, Patel JR, Ferenczi MA (1990) Calcium release from cardiac sacroplasmic reticulum induced by photorelease of calcium or Ins(1,4,5)P3. Am J Physiol 258:H610–H615

    CAS  PubMed  Google Scholar 

  • Keynes RD, Rojas E, Taylor RE, Vergara J (1973) Calcium and potassium systems of a giant barnacle muscle fibre under membrane potential control. J Physiol (Lond) 229:409–455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Knakal RC, Summers WC, Cragoe ES, Boron WF (1985) Expression of a mammalian Na-H exchanger in muscle fibers of the giant barnacle Nature (Lond) 315:756–758

    CAS  PubMed  Google Scholar 

  • Krizanova O, Novotova M, Zachar J (1990) Characterisation of DHP binding-protein in crayfish striated muscle. FEBS Lett 267:311–315

    CAS  PubMed  Google Scholar 

  • Kushmerick MJ, Podolsky RJ (1969) Ionic mobility in cells. Science NY 166:1297–1298

    CAS  Google Scholar 

  • Lai FA, Meissner G (1989) The muscle ryanodine receptor and its intrinsic Ca2+ channel activity. J Bioenerg Biomembr 21:227–246

    CAS  PubMed  Google Scholar 

  • Lai FA, Erickson HP, Rousseau E, Liu QY, Meissner G (1988) Purification and reconstitution of the calcium release channel from skeletal muscle. Nature 331:315–319

    CAS  PubMed  Google Scholar 

  • Lakshiminarayanaiah N, Rojas E (1973) Effect of anion and cations on resting membrane potential of internally perfused barnacle muscle fibres. J Physiol (Lond) 233:613–634

    Google Scholar 

  • Lamb GD (1986) Components of charge movement in rabbit skeletal muscle: the effect of tetracaine and nifedipine. J Physiol (Lond) 376:85–100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lamb GD, Stephenson DG (1990) Ca2+ release in skinned muscle fibres from the toad by transverse tubular depolarisation or by direct stimulation. J Physiol (Lond) 423:495–518

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lea TJ (1986) A comparison of the abilities of CO2/HCO 3 , protonophores and changes in solution pH to release Ca2+ from the SR of barnacle myofibrillar bundles. Pflugers Arch 406:315–322

    CAS  PubMed  Google Scholar 

  • Lea TJ, Ashley CC (1978) Increase in free Ca2+ in muscle after exposure to CO2. Nature 275:236–238

    CAS  PubMed  Google Scholar 

  • Lea TJ, Ashley CC (1981) Carbon dioxide or bicarbonate ions release Ca2+ from internal stores in crustacean myofibrillar bundles. J Membr Biol 61:115–125

    CAS  PubMed  Google Scholar 

  • Lea TJ, Ashley CC (1982) The effect of pH on the rate of relaxation of isolated barnacle myofibrillar bundles. Biochim Biophys Acta 681:130–137

    CAS  PubMed  Google Scholar 

  • Lea TJ, Ashley CC (1989) Ca-induced Ca release from the sacroplasmic reticulum of isolated myofibrillar bundles of barnacle muscle fibres. Pflugers Arch 413:401–406

    CAS  PubMed  Google Scholar 

  • Lea TJ, Ashley CC (1990) Ca2+ release from the sarcoplasmic reticulum of barnacle myofibrillar bundles initiated by photolysis of caged Ca2+. J Physiol (Lond) 427:435–453

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lea TJ, Griffiths PJ, Tregear RT, Ashley CC (1986) An examination of the ability of InsP3 to induce Ca release and tension development in skinned muscle fibres of frog and crustacea. FEBS Lett 207:153–161

    CAS  PubMed  Google Scholar 

  • Lea TJ, Fenton MJ, Potter JD, Ashley CC (1990) Rapid activation by photolysis of nitr-5 in skinned fibres from the striated adductor from the scallop. Biochim Biophys Acta 1034:186–194

    CAS  PubMed  Google Scholar 

  • Lederer J, Nelson MT (1983) Effects of extracellular sodium on calcium efflux and membrane current in barnacle single muscle cells. J Physiol (Lond) 341:325–339

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lederer J, Nelson MT (1984) Na pump stoichiometry determined by simultaneous measurement of Na efflux and membrane current in barnacle. J Physiol (Lond) 348:665–677

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lombardi V, Piazzesi G, Linari M (1992) Rapid regeneration of the actin-myosin power stroke in contracting muscle. Nature (Lond) 355:638–641

    CAS  PubMed  Google Scholar 

  • Loesser KE, Castellani LG, Franzini-Armstrong C (1992) Disposition of junctional feet in muscles of inventetrates. J Muscle Res Cell Motil 13(2) 161–173.

    CAS  PubMed  Google Scholar 

  • Ma J, Fill M, Knudson MC, Campbell KP, Coronado R (1988) Ryanodine receptor of skeletal muscle is a gap junction-type channel. Science Wash. 242:99–102

    CAS  Google Scholar 

  • Marban E, Rink T, Tsien RW, Tsien RY (1980) Free calcium in heart muscle at rest and during contraction measured with Ca2+-sensitive microelectrodes. Nature 286:845–850

    CAS  PubMed  Google Scholar 

  • Matsubara G, Elliott G (1972) X ray diffraction studies on skinned single fibres of frog skeletal muscle. J Mol Biol 72:657–669

    CAS  PubMed  Google Scholar 

  • Melzer W, Rios E, Schneider MF (1986) The removal of myoplasmic free calcium following calcium release in frog skeletal muscle. J Physiol (Lond) 372:261–292

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mikami A, Imoto K, Tanabe T, Niidome T, Mori Y, Takeshima H, Narumiya S, Numa S (1989) Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature 340:230–233

    CAS  PubMed  Google Scholar 

  • Miledi R, Parker I, Zhu PH (1982) Calcium transients evoked by action potentials in frog twitch muscle fibres. J Physiol (Lond) 333:655–679

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moisescu DG (1976) Kinetics of reaction in calcium-activated skinned muscle fibres. Nature 262:610–613

    CAS  PubMed  Google Scholar 

  • Moisescu DG, Ashley CC (1977) The effect of physiologically occurring cations upon aequorin light emission: determination of binding constants. Biochim Biophys Acta 460:189–205

    CAS  PubMed  Google Scholar 

  • Moisescu DG, Ashley CC, Campbell AK (1975) Comparative aspects of the calcium-sensitive photoproteins, aequorin and obelin. Biochim Biophys Acta 396:133–140

    CAS  PubMed  Google Scholar 

  • Monod J, Wyman J, Changeux J-P (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–100

    CAS  PubMed  Google Scholar 

  • Mounier Y, Goblet C (1987) Role of different Ca2+ sources in the excitation-contraction coupling in crab muscle fibres. Can J Physiol Pharmacol 65:667–671

    CAS  PubMed  Google Scholar 

  • Mulligan IP, Ashley CC (1989) Rapid relaxation of single frog skeletal muscle fibres following laser flash photolysis of the caged calcium chelator, diazo-2. FEBS Lett 255:196–200

    CAS  PubMed  Google Scholar 

  • Mulligan IP, Griffiths PJ, Ashley CC (1987) Laser flash photolysis of c-ATP in skinned muscle fibres from B nubilus. Biophys J 51:470a

    Google Scholar 

  • Mulligan IP, Adams SR, Tsien RY, Potter JD, Ashley CC (1990) Flash photolysis of the caged calcium chelator, diazo-2 produces rapid relaxation of single skeletal muscle fibres. Biophys J 57:541a

    Google Scholar 

  • Murayama K, Lakshminarayanaiah N (1977) Some electrical properties of the membrane of the barnacle muscle fibres under internal perfusion. J memb Biol 35:257–283

    CAS  Google Scholar 

  • Natori R (1954) The property and contraction process of isolated myofibrils. Jikeikai Med J 1:119–126

    Google Scholar 

  • Nelson MT, Blaustein MP (1980) Properties of Na pumps in internally perfused barnacle muscle fibres. J Gen Physiol 75:163–206

    Google Scholar 

  • Nelson MT, Blaustein MP (1981) Effects of ATP and vanadate on Ca2+ efflux from barnacle muscle. Nature 284:314–316

    Google Scholar 

  • Olivares E, Rojas E (1992) The ryanodine receptor in reticulum sarcoplasmic reticulum membranes. Biophys J 61:A23.

    Google Scholar 

  • Palmer RE, Mulligan IP, Nunn C, Ashley CC (1990) Striated scallop muscle relaxation: fast force transients produced by photolysis of Diazo-2. Biochem Biophys Res Commun 168:295–300

    CAS  PubMed  Google Scholar 

  • Palmer RE, Simmett SJ, Mulligan IP, Ashley CC (1991) Skeletal muscle relaxation with diazo-2: the effect of altered pH. Biochem Biophys Res Commun 181:1337–1342

    CAS  PubMed  Google Scholar 

  • Pan BS, Solaro RJ (1987) Calcium-binding properties of troponin C in detergent-skinned heart muscle fibres. J Biol Chem 262:7839–7849

    CAS  PubMed  Google Scholar 

  • Portzehl H, Caldwell PC, Ruegg JC (1964) The dependence of contraction and relaxation of muscle fibres from the crab Maid squinado on the internal concentration of free Ca2+ ions. Biochim Biophys Acta 79:581–591

    CAS  PubMed  Google Scholar 

  • Potter JD, Robertson SP, Johnson JD (1981) Magnesium and regulation of muscle contraction. Fed Proc 40:2653–2656

    CAS  PubMed  Google Scholar 

  • Potter JD, Ashley CC, Machado K, Collins J, Theibert JL (1987) Resolution and properties of two barnacle TnC isoforms. Biophys J 51:329a

    Google Scholar 

  • Rasgado-Flores H, Santiago EM, Blaustein MP (1989) Kinetics and stoichiometry of coupled Na efflux and Ca influx (Na/Ca exchange) in barnacle muscle cells. J Gen Physiol 93:1219–1241

    CAS  PubMed  Google Scholar 

  • Revest PA (1987) Excitation of barnacle muscle by glutamate analogues and proctolin. J Physiol (Lond) 394:20P

    Google Scholar 

  • Ridgway EB, Ashley CC (1967) Calcium transients in single muscle fibers. Biochem Biophys Res Commun 29:229–233

    CAS  PubMed  Google Scholar 

  • Ridgway EB, Gordon A (1984) Muscle Ca2+ transient: effect of post stimulus length changes in single fibres. J Gen Physiol 83:75–103

    CAS  PubMed  Google Scholar 

  • Ridgway EB, Gordon AM, Martyn DA (1983) Hysteresis in the force-calcium relation in muscle. Science NY 219:1075–1077

    CAS  Google Scholar 

  • Rios E, Brum G (1987) Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature 325:717–720

    CAS  PubMed  Google Scholar 

  • Rios E, Pizarro G (1991) Voltage-sensor of excitation-contraction coupling in skeletal muscle. Physiol Rev 71:849–908

    CAS  PubMed  Google Scholar 

  • Rios E, Ma J, Gonzalez A (1991) The mechanical hypothesis of excitation-contraction (EC) coupling in skeletal muscle. J Muscle Res Cell Motil 12:127–135

    CAS  PubMed  Google Scholar 

  • Robertson SP, Johnson JD, Potter JD (1981) The time course of Ca2+ exchange with calmodulin, troponin, parvalbumin and myosins to transient increases in Ca2+ Biophys J 34:559–569

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rojas C, Hidalgo C (1990) Inositol trisphosphate binds to heavy sarcoplasmic reticulum membranes isolated from frog skeletal muscle. Biophys J 57:342a

    Google Scholar 

  • Rojas E, Nasser-Gentina V, Luxoro M, Pollard ME, Carrasco MA (1987) InsP3-induced Ca2+ release from the SR and contraction in crustacean muscle. Can J Physiol Pharmacol 65:672–679

    CAS  PubMed  Google Scholar 

  • Russell JM, Blaustein MP (1974) Calcium efflux from barnacle muscle fibres. J Gen Physiol 63:144–167

    CAS  PubMed Central  PubMed  Google Scholar 

  • Russell JM, Blaustein MP (1975) Calcium fluxes in internally dialysed giant barnacle muscle fibres. J Membr Biol 23:157–179

    CAS  PubMed  Google Scholar 

  • Russell JM, Brodwick MS (1979) Properties of chloride transport in barnacle muscle fibres. J Gen Physiol 73:343–368

    CAS  PubMed  Google Scholar 

  • Schneider MF, Chandler WK (1973) Voltage dependent charge movement in skeletal muscle: a possible step in excitation-contraction coupling. Nature 242:244–246

    CAS  PubMed  Google Scholar 

  • Selverston AI (1967) Structure and function of the transverse tubular system in crustacean muscle. Am Zool 7:515–525

    Google Scholar 

  • Seok JH, Xu L, Meissmer G (1992) Purification and preliminary characterization of a 305 ryanodine receptor-Ca2+ release channel complex from lobster skeletal muscle Biophys J 61:A23

    Google Scholar 

  • Shimomura O, Johnson FH (1969) Properties of the bioluminescent protein, aequorin. Biochemistry 8:3991–3997

    CAS  PubMed  Google Scholar 

  • Shimomura O, Johnson FH (1979) Chemistry of aequorin. In: Ashley CC, Campbell AK (eds) Detection and measurement of free Ca2+ in cells. Elsevier/North Holland, Amsterdam; pp 73–83

    Google Scholar 

  • Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin: a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    CAS  PubMed  Google Scholar 

  • Shimomura O, Johnson FH, Saiga Y (1963) Microdetermination of calcium by aequorin luminescence. Science NY 140:1339–1340

    CAS  Google Scholar 

  • Shiner JS, Solaro RJ (1982) Activation of thin-filament-regulated muscle by calcium ion: considerations based on nearest-neighbour lattice statistics Proc Natl Acad Sci USA 79:4637–4641

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shiner JS, Solaro RJ (1984) The Hill coefficient for the Ca2+-activation of striated muscle contraction. Biophys J 46:541–543

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simon BJ, Klein MG, Schneider MF (1989) Caffeine slows turn-off of calcium release in voltage clamped muscle fibers. Biophys J 55:793–797

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith JS, Imagawa T, Ma J, Fill M, Campbell KP, Coronado R (1988) Purified ryanodine receptor from rabbit skeletal muscle is the of the sarcoplasmic reticulum and T system of muscle cells. Prog Biophys molec Biol 16 107–142

    Google Scholar 

  • Solaro RJ, Ruegg JC (1982) Stimulation of Ca2+ binding and ATPase activity of dog cardiac myofibrils, by AR-L 115BS, a novel cardiotonic agent. Circ. Res. 51:290–294

    CAS  PubMed  Google Scholar 

  • Stephenson EW (1981) Activation of fast skeletal muscle: contributions of studies on skinned fibres. Am J Physiol 240:C1–C19

    CAS  PubMed  Google Scholar 

  • Stephenson DG, Williams DA (1980) Activation of skinned arthropod muscle fibres by Ca2+ and Sr2+ J Muscle Res Cell Motil 1:73–87

    CAS  PubMed  Google Scholar 

  • Stephenson DG, Wendt LR, Forrest QG (1981) Non-uniform ion distributions and electrical potentials in sarcoplasmic regions of skeletal muscle fibres Nature. 289:690–692

    CAS  PubMed  Google Scholar 

  • Takeshima H et al. (1989) Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339:439–445

    CAS  PubMed  Google Scholar 

  • Tanabe T, Takeshima H, Mikami A, Flockerzi V, Takahashi H et al. (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328:313–318

    CAS  PubMed  Google Scholar 

  • Tanabe T, Mikami A, Numa S, Beam KG (1990) Cardiac-type excitation-contraction in dysgenic skeletal muscle injected with cardiac dihydropyridine receptor DNA. Nature 344:451–453

    CAS  PubMed  Google Scholar 

  • Tanabe T, Adams B, Numa S, Beam K (1991) Repeat I of the dihydropyridine receptor is critical in determining calcium channel activation kinetics. Nature 352:800–803

    CAS  PubMed  Google Scholar 

  • Timmerman MP, Ashley CC (1986) Fura-2 diffusion and its use as an indicator of transient free Ca2+ changes in single striated muscle cells. FEBS Lett 209:1–8

    CAS  PubMed  Google Scholar 

  • Timmerman MP, Godber JF, Walton A, Ashley CC (1990) Imaging spatial distribution of release in single muscle fibres from Balanus nubilus using image intensification. Cell Calcium 11:211–220

    CAS  PubMed  Google Scholar 

  • Tsien RY (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design synthesis and properties of prototype structures. Biochemistry 19:2396–2404

    CAS  PubMed  Google Scholar 

  • Tsien RY, Rink T (1980) Neutral carrier ion selective electrodes for measurement of intracellular free calcium. Biochim Biophys Acta 599:623–638

    CAS  PubMed  Google Scholar 

  • Tsien RY, Zucker RS (1986) Control of cytoplasmic calcium with photolabile tetracarboxylate 2-nitrobenzhydrol chelators. Biophys J 50:843–853

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsien RY, Rink TJ, Poenie M (1985) Measurement of cytosolic free Ca2+ in individual small cells using fluorescent microscopy with dual excitation wavelengths. Cell Calcium 6:145–157

    CAS  PubMed  Google Scholar 

  • Van Wagoner DR, Dubyak GR, Scarpa A (1985) Decrease in transverse tubular calcium concentration in barnacle muscle with electrical stimulation. Biophys J 47:34a

    Google Scholar 

  • Van Wagoner DR, Whittembury J, Scarpa A (1986) Measurement of intracellular ionized Mg and K in single barnacle muscle cells. Biophys J 49:463a

    Google Scholar 

  • Vergara J, Verdugo P (1988) Calcium transients in voltage clamped giant barnacle muscle fiber. Biophys J 53:647a

    Google Scholar 

  • Vergara J, Tsien RY, Delay M (1985) Inositol 1,4,5-trisphosphate: a possible chemical link in EC coupling in muscle. Proc Natl Acad Sci USA 82: 6352–6356

    CAS  PubMed Central  PubMed  Google Scholar 

  • White HP, Taylor EW (1976) Energetics and mechanism of actomyosin adenosine triphosphate. Biochemistry 15:5818–5826

    CAS  PubMed  Google Scholar 

  • Whitehead EA (1979) The structure of steady state enzyme kinetic equations: a graphtheoretical algorithm for obtaining conditions for reduction in degree by common-factor cancellations. J Theor Biol 80:355–381

    CAS  PubMed  Google Scholar 

  • Williams AJ, Ashley RH (1989) Reconstitution of cardiac sarcoplasmic reticulum calcium channels. Ann N Y Acad Sci 560:163–173

    CAS  PubMed  Google Scholar 

  • Wnuk W, Schoechlin M, Stein EA (1984) Regulation of actomyosin ATPase by a single calcium-binding site on troponin C from crayfish. J Biol Chem 259:9017–9023

    CAS  PubMed  Google Scholar 

  • Woledge RW, Curtin NA, Homsher E (1985) Energetic aspect of muscle contraction. Monogr Physiol Soc 41

    Google Scholar 

  • Zachar J, Zacharova D (1966) Potassium contractures in single muscle fibres of the crayfish. J Physiol (Lond) 186:596–618

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zot HG, Iida S, Potter JD (1983) Thin filament interactions and Ca2+ binding to Tn. Chim Scr 21:133–136

    CAS  Google Scholar 

  • Zot HG, Guth K, Potter JD (1986) Fast skeletal muscle skinned fibers and myofibrils reconstituted with N-terminal fluorescent analogues of troponin C. J Biol Chem 261:15883–15890

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this chapter

Cite this chapter

Ashley, C.C., Griffiths, P.J., Lea, T.J., Mulligan, I.P., Palmer, R.E., Simnett, S.J. (1993). Barnacle muscle: Ca2+, activation and mechanics. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 122. Reviews of Physiology, Biochemistry and Pharmacology, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0035275

Download citation

  • DOI: https://doi.org/10.1007/BFb0035275

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56380-8

  • Online ISBN: 978-3-540-47547-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics