Skip to main content

Vasodilator and vasoconstrictor substances produced by the endothelium

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 122

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 122))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alheid U, Frolich JC, Fostermann U (1987) Endothelium-derived relaxing factor from cultured human endothelial cells inhibits aggregation of human platelets. Thromb Res 47:561–571

    CAS  PubMed  Google Scholar 

  • Ando K, Hirata Y, Shickiri M, Emori T, Marumo F (1989) Presence of immunoreactive endothelin in human plasma. FEBS Lett 245:164–166

    CAS  PubMed  Google Scholar 

  • Angus JA, Cocks TM (1989) Endothelium-derived relaxing factor. Pharmacol Ther 41:303–352

    CAS  PubMed  Google Scholar 

  • Antonio JW, Tippens JR (1989) Effect of endothelin on canine and porcine coronary preparations in vitro. Br J Pharmacol 96 [Suppl]:100P (abstr)

    Google Scholar 

  • Archer SL, Tolins JP, Raij L, Weir EK (1989) Hypoxic pulmonary vasoconstriction is enhanced by inhibition of the synthesis of an endothelium-derived relaxing factor. Biochem Biophys Res Commun 164:1198–1205

    CAS  PubMed  Google Scholar 

  • Auch-Schwelk W, Katusic ZS, Vanhoutte PM (1989) Contractions to oxygen-derived free radicals are augmented in aorta of the spontaneously hypertensive rat. Hypertension 13:859–864

    CAS  PubMed  Google Scholar 

  • Auch-Schwelk W, Katusic ZS, Vanhoutte PM (1990) Thromboxane A2 receptor antagonists inhibit endothelium-dependent contractions. Hypertension 15:699–703

    CAS  PubMed  Google Scholar 

  • Auguet M, Delaflotte S, Chabrier PE, Pirotzky E, Clostre F, Braquet P (1988) Endothelin and Ca++ agonist Bay K 8644: different vasoconstrictive properties. Biochem Biophys Res Commun 156:186–192

    CAS  PubMed  Google Scholar 

  • Azuma H, Ishikawa M, Sekizaki S (1986) Endothelium-dependent inhibition of platelet aggregation. Br J Pharmacol 88:411–415

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baenziger NL, Dillenger MJ, Majerus PW (1977) Cultured human fibroblasts and arterial cells produce a labile platelet-inhibitory prostaglandin. Biochem Biophys Res Commun 78:294–301

    CAS  PubMed  Google Scholar 

  • Bassenge E, Heusch G (1990) Endothelial and neuro-humoral control of coronary blood flow in health and disease. Rev Physiol Biochem Pharmacol 116:77–165

    CAS  PubMed  Google Scholar 

  • Bassenge E, Pohl U (1986) Two principals of large artery dilation: indirect endotheliummediated and direct smooth muscle relaxation. In: Margo E, Osswald W, Reis O, Vanhouttee PM (eds) Central and peripheral mechanisms of cardiovascular regulation. New York, pp 163–196 (NATO adv sci inst ser A, life sciences vol 109)

    Google Scholar 

  • Baydoun AR, Peers S, Cirino G, Woodward B (1989) Effects of endothelin-1 on the rat isolated heart. J Cardiovasc Pharmacol 13 [Suppl 5]:S193–S196

    CAS  PubMed  Google Scholar 

  • Baydoun AR, Peers SH, Cirino G, Woodward B (1990) Vasodilator action of endothelin-1 in the perfused rat heart. J Cardiovasc Pharmacol 15:759–763

    CAS  PubMed  Google Scholar 

  • Beasley D, Schwartz JH, Brenner BM (1991) Interleukin-1 induces prolonged L-argininedependent cyclic guanosine monophosphate and nitrite production in rat vascular smooth muscle cells. J Clin Invest 87:602–608

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Best LC, Bone EA, Holland TK, Jones PBB, Hunt NH (1980) Studies on the role of cyclic GMP in the control of human platelet function. Biochem Soc Trans 8:531–532

    CAS  PubMed  Google Scholar 

  • Bigay J, Deterre P, Pfister C, Chabre M (1987) Fluoride complexes of aluminum or beryllium act on G-proteins as reversibly bound analogues of the γ-phosphate of GTP. EMBO J 6:2907–2913

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blough NV, Zafiriou OC (1985) Reaction of superoxide with nitric oxide to form peroxynitrite in alkaline aqueous solution. Inorg Chem 24:3502–3504

    CAS  Google Scholar 

  • Bodelsson M, Arneklo-Nobin B, Tornebrandt K (1989) Cooling augments contractile response to 5-hydroxytryptamine via an endothelium-dependent mechanism. Blood Vessels 26:347–359

    CAS  PubMed  Google Scholar 

  • Bolton TB, Clapp LH (1986) Endothelial-dependent relaxant actions of carbachol and substance P in arterial smooth muscle. Br J Pharmacol 87:713–723

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bolton TB, Lang RS, Takewaki T (1984) Mechanisms of action of noradrenaline and carbachol on smooth muscle of guinea-pig anterior mesenteric artery. J Physiol (Lond) 351:549–572

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boulanger C, Lüscher TF (1990) Release of endothelin from the porcine aorta. Inhibition by endothelium-derived relaxing factor. J Clin Invest 85:587–590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boulanger C, Hendrickson H, Lorenz RR, Vanhoutte PM (1989) Release of different relaxing factors by cultured porcine endothelial cells. Circ Res 64:1070–1078

    CAS  PubMed  Google Scholar 

  • Brayden J (1990) Membrane hyperpolarization is a mechanism of endothelium-dependent cerebral vasodilation. Am J Physiol 259:H668–H673

    CAS  PubMed  Google Scholar 

  • Bregestovski P, Bakhramov A, Danilov S, Moldobaeva A, Takeda K (1988) Histamineinduced inward currents in cultured endothelial cells from human umbilical vein. Br J Pharmacol 95:429–436

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brock TA, Capasso EA (1988) Thrombin and histamine activate phospholipase C in human endothelial cells via a phorbol ester-sensitive pathway. J Cell Physiol 136:54–62

    CAS  PubMed  Google Scholar 

  • Brock TA, Dennis PA, Griendling KK, Diehl TS, Davies PF (1988) GTPγS loading of endothelial cells stimulates phospholipase C and uncouples ATP receptors. Am J Physiol 255:C667–C673

    CAS  PubMed  Google Scholar 

  • Brune B, Lapentina EG (1989) Activation of a cytosolic ADP-ribosyltransferase by nitricoxide generating agents. J Biol Chem 264:8455–8458

    CAS  PubMed  Google Scholar 

  • Buonassisi V, Venter JC (1978) Hormone and neurotransmitter receptors in an established vascular endothelial cell line. Proc Natl Acad Sci USA 73:1612–1616

    Google Scholar 

  • Busse R, Mulsch A (1990) Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin. FEBS Lett 265:133–136

    CAS  PubMed  Google Scholar 

  • Busse R, Pohl U, Fostermann U, Bassenge E (1984) Endothelium-dependent modulation of arterial smooth muscle tone and PGI2-release: pulsatile verses steady flow. In: Pohl U, Fostermann U, Busse R, Bassenge E, Schror E (eds) Prostaglandins and other eicosanoids in the cardiovascular system. 2nd international symposium Nurnberg-Furth. Basel, Karger, pp 553–558

    Google Scholar 

  • Busse R, Fichtner H, Luckhoff A, Kohlhardt M (1988) Hyperpolarization and increased free calcium in acetylcholine-stimulated endothelial cells. Am J Physiol 255:H965–H969

    CAS  PubMed  Google Scholar 

  • Busse R, Luckhoff A, Pohl U, Bassenge E (1989) EDRF-induced inhibition of platelet aggregation: synergy between PGI2 and EDRF. Funktionsanal Biol Sys 19:69–77

    Google Scholar 

  • Cao L, Banks RO (1990) Cardiovascular and renal actions of endothelin: effects of calcium channel blockers. Am J Physiol 258 (Renal Fluid Electrolyte Physiol 27):F254–F258

    Google Scholar 

  • Cartier R, Pearson PJ, Lin PJ, Schaff HV (1991) Time course and extent of recovery of endothelium-dependent contractions and relaxations after direct arterial injury. J Thorac Cardiovasc Surg 102:371–377

    CAS  PubMed  Google Scholar 

  • Cernacek P, Stewart DJ (1989) Immunoreactive endothelin in human plasma: marked elevations in patients in cardiogenic shock. Biochem Biophys Res Commun 161:562–567

    CAS  PubMed  Google Scholar 

  • Chen G, Suzuki H (1989) Some electrical properties of the endothelium-dependent hyperpolarization recorded from rat arterial smooth muscle cells. J Physiol (Lond) 410:91–106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen G, Suzuki H, Weston AH (1988) Acetylcholine release endothelium-derived hyperpolarizing factor and EDRF from rat blood vessels. Br J Pharmacol 95:1165–1174

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cherry PD, Furchgott RF, Zawadzki JV, Jothianandan D (1982) Role of endothelial cells in the relaxation of isolated arteries by bradykinin. Proc Natl Acad Sci USA 79:2106–2110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cocks TM, Angus JA (1983) Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature 305:627–630

    CAS  PubMed  Google Scholar 

  • Cocks TM, Angus JA (1985) Bioassay of the release of endothelium-derived relaxing factor (EDRF) from isolated endothelial cells in vitro. In: Bevan JA, Godfraind T, Maxwell RA, Stoclet JS, Worcel M (eds) Vascular neuroeffector mechanisms, Elsevier, Amsterdam, pp 131–136

    Google Scholar 

  • Cocks TM, Angus JA, Campbell JH, Campbell GR (1985) Release and properties of endothelium-derived relaxing factor (EDRF) from endothelial cells in culture. J Cell Physiol 123:310–320

    CAS  PubMed  Google Scholar 

  • Cocks TM, Little PL, Angus JA, Cragoe EJ (1988) Amiloride analogues cause endothelium-dependent relaxation in the canine coronary artery in vitro: possible role of Na+/Ca2+ exchange. Br J Pharmacol 95:67–76

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen RA, Shepherd JT, Vanhoutte PM (1983a) Inhibitory role of the endothelium in the response of isolated coronary arteries to platelets. Science 221:273–274

    CAS  PubMed  Google Scholar 

  • Cohen RA, Shepherd JT, Vanhoutte PM (1983b) 5-Hydroxytryptamine can mediate endothelium-dependent relaxation of coronary arteries. Am J Physiol 245:H1077–H1078

    CAS  PubMed  Google Scholar 

  • Colden-Stanfield M, Schilling WP, Ritchie AK, Eskin SG, Navarro LT, Kunze DL (1987) Bradykinin-induced increases in cytosolic calcium and ionic currents in cultured bovine aortic endothelial cells. Circ Res 61:632–640

    CAS  PubMed  Google Scholar 

  • Collins P, Griffith TM, Henderson AH, Lewis MJ (1986) Endothelium-derived relaxing factor alters calcium fluxes in rabbit aorta: A cyclic guanosine monophosphate-mediated effect. J Physiol (Lond) 381:427–437

    CAS  PubMed Central  PubMed  Google Scholar 

  • Craven PA, De Rubertis FR (1978) Restoration of the responsiveness of purified guanylate cyclase to nitrosoguanidine, nitric oxide, and related activators by heme and heme proteins: evidence for the involvement of the paramagnetic nitrosyl-heme complex in enzyme activation. J Biol Chem 253:8433–8443

    CAS  PubMed  Google Scholar 

  • Cushing DJ, Sabouni MH, Brown GL, Mustafa SJ (1990) Fluoride produces endothelium-dependent relaxation and endothelium-independent contraction in coronary artery. J Pharmacol Exp Ther 254:28–32

    CAS  PubMed  Google Scholar 

  • Dainty IA, McGrath JC, Spedding M, Templeton AGB (1990) The influence of the initial stretch and the agonist-induced tone on the effect of basal and stimulated release of EDRF. Br J Pharmacol 100:767–773

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dale H (1914) The action of certain esters and ethers of choline and their relation to muscarine J Pharmacol Exp Ther 6:147–190

    CAS  Google Scholar 

  • D'Amore P, Shepro D (1977) Stimulation of growth and calcium influx in cultured, bovine aortic endothelial cells by platelets and vasoactive substances. J Cell Physiol 92:177–184

    PubMed  Google Scholar 

  • Davidson MML, Haslam RJ (1981) Roles of cyclic nucleotides in the inhibition of platelet function by nitroprusside and ascorbate. Thromb Haemost 46:149 (abstr)

    Google Scholar 

  • De Mey JG, Vanhoutte PM (1980) Interaction between Na+, K+ exchanges and the direct inhibitory effect of acetylcholine on canine femoral arteries. Circ Res 46:826–836

    PubMed  Google Scholar 

  • De Mey JG, Vanhoutte PM (1982) Heterogeneous behavior of the canine arterial and venous wall: Importance of the endothelium. Circ Res 51:439–447

    PubMed  Google Scholar 

  • De Mey JG, Vanhoutte PM (1983) Anoxia and endothelium-dependent reactivity of the canine femoral artery. J Physiol (Lond) 335:65–74

    PubMed Central  PubMed  Google Scholar 

  • De Moura RS, Vanhoutte PM (1988) Effect of cooling and warming on the vasodilator response of the isolated dog saphenous artery to acetylcholine. Braz J Med Biol Res 21:157–159

    PubMed  Google Scholar 

  • De Nucci G, Gryglewski RJ, Warner TD, Vane JR (1988a) Receptor-mediated release of endothelium-derived relaxing factor and prostacyclin from bovine aortic endothelial cells is coupled. Proc Natl Acad Sci USA 85:2334–2338

    PubMed Central  PubMed  Google Scholar 

  • De Nucci G, Thomas GR, D'Orleans-Juste P, Antunes E, Walder C, Warner TD, Vane JR (1988b) The pressor effects of circulating endothelin are limited by its removal in the pulmonary circulation and by the release of prostacyclin and endothelium-derived relaxing factor. Proc Natl Acad Sci USA 85:9797–9800

    PubMed Central  PubMed  Google Scholar 

  • Derian CK, Moskowitz MA (1986) Polyphosphoinositide hydrolysis in endothelial cells and carotid artery segments. J Biol Chem 261:3831–3837

    CAS  PubMed  Google Scholar 

  • DeTar R, Bohr DF (1972) Contractile responses of isolated vascular smooth muscle during prolonged exposure to anoxia. Am J Physiol 222:1269–1273

    CAS  PubMed  Google Scholar 

  • De Witt DL, Day JS, Sonnenburg WK, Smith WL (1983) Concentrations of prostaglandin endoperoxide synthase and prostaglandin I2 synthase in the endothelium and smooth muscle of bovine aorta. J Clin Invest 72:1882–1888

    Google Scholar 

  • Dohlman HG, Caron MG, Lefkowitz RJ (1987) A family of receptors coupled to guanine regulatory proteins. Biochemistry 26:2657–2664

    CAS  PubMed  Google Scholar 

  • Dolphin AC (1987) Nucleotide binding proteins in signal transduction in health and disease. Trends Neurosci 10:53–57

    CAS  Google Scholar 

  • Duling BR, Berne RM (1970) Propagated vasodilation in the microcirculation of the hamster cheek pouch. Circ Res 26:163–170

    CAS  PubMed  Google Scholar 

  • Dusting GJ, Moncada S, Vane JR (1977) Prostacyclin (PGX) is the endogenous metabolite responsible for relaxation of coronary arteries induced by arachidonic acid. Prostaglandins 13:3–15

    CAS  PubMed  Google Scholar 

  • Edlund A, Wennmalm A (1990) Endothelin does not affect aggregation in human platelets. Clin Physiol 10:585–590

    CAS  PubMed  Google Scholar 

  • Edwards DH, Griffith TM, Ryley HC, Henderson AH (1986) Haptoglobin-haemoglobin complex in human plasma inhibits endothelium-dependent relaxation: evidence that endothelium-derived relaxing factor acts as a local autacoid. Cardiovasc Res 20:549–556

    CAS  PubMed  Google Scholar 

  • Eldor A, Falcone DJ, Hajjar DP, Minick CR, Weksler BB (1981) Recovery of prostacyclin production by de-endothelialized rabbit aorta: critical role of the neointimal smooth muscle. J Clin Invest 67:735–741

    CAS  PubMed Central  PubMed  Google Scholar 

  • Emori T, Hirata Y, Ohta K, Shichiri M, Marumo F (1989) Concomitant secretion of big endothelin and its C-terminal fragment from human and bovine endothelial cells. Biochem Biophys Res Commun 160:93–100

    CAS  PubMed  Google Scholar 

  • Feelisch M, Noack EA (1987) Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase. Eur J Pharmacol 139:19–30

    CAS  PubMed  Google Scholar 

  • Feletou M, Vanhoutte PM (1988) Endothelium-dependent hyperpolarization of canine coronary smooth muscle. Br J Pharmacol 93:515–524

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fichtner H, Frobe U, Busse R, Kohlhardt M (1987) Single nonselective cation channels and Ca+2-activated K+ channels in aortic endothelial cells. J Membr Biol 98:125–133

    CAS  PubMed  Google Scholar 

  • Fink GD, Pawloski CM, Kanagy NL, Mortensen LH (1989) Chronic infusion of endothelin in rats. FASEB J 3:A236 (abstr)

    Google Scholar 

  • Fiscus RR, Rapoport RM, Murad F (1984) Endothelium-dependent and nitrovasodilator-induced activation of cyclic GMP-dependent protein kinase in rat aorta. J Cyclic Nucleotide Protein Phosphorylation Res 9:415–425

    CAS  Google Scholar 

  • Flavahan NA, Vanhoutte PM (1990) Pertussis toxin inhibits endothelium-dependent relaxations evoked by fluoride. Eur J Pharmacol 178:121–124

    CAS  PubMed  Google Scholar 

  • Flavahan NA, Shimokawa H, Vanhoutte PM (1989) Pertussis toxin inhibits endothelium-dependent relaxations to certain agonists in porcine coronary arteries. J Physiol (Lond) 408:549–560

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fleisch A (1935) Les reflexes nutritifs ascendants producteurs de dilatation arterielle. Arch Int Physiol 41:141–167

    Google Scholar 

  • Forstermann U, Neufang B (1985) Endothelium-dependent vasodilation by melittin: are lipoxygenase products involved? Am J Physiol 249:H14–H19

    CAS  PubMed  Google Scholar 

  • Forstermann U, Trogish G, Busse R (1984) Species-dependent differences in the nature of endothelium-derived relaxing factor. Eur J Pharmacol 106:639–643

    CAS  PubMed  Google Scholar 

  • Forstermann U, Mulsch A, Bohme E, Busse R (1986) Stimulation of soluable guanylate cyclase by an acetylcholine-induced endothelium-derived relaxing factor from rabbit and canine arteries. Circ Res 58:531–538

    CAS  PubMed  Google Scholar 

  • Forstermann U, Mugge A, Alheid U, Bode SM, Frolich JC (1989) Endothelium-derived relaxing factor (EDRF): a defence mechanism against platelet aggregation and vasospasm in human coronary arteries. Eur Heart J 10 [Suppl F]:36–43

    PubMed  Google Scholar 

  • Forstermann U, Schmidt HW, Pollock JS, Sheng H, Mitchell JA, Warner TD, Nakane M, Murad F (1991) Isoforms of nitric oxide synthase. Characterization and purification from different cell types. Biochem Pharmacol 42:1849–1857

    CAS  PubMed  Google Scholar 

  • Freay A, Johns A, Adams DJ, Ryan US, Van Breemen C (1989) Bradykinin and inositol-1,4,5-triphosphate stimulated calcium release from intracellular stores in cultured bovine endothelial cells. Pflugers Arch 414:377–384

    CAS  PubMed  Google Scholar 

  • Furchgott RF (1955) The pharmacology of vascular smooth muscle. Pharmacol Rev 7:183–265

    CAS  PubMed  Google Scholar 

  • Furchgott RF (1981) The requirement for endothelial cells in the relaxation of arteries by acetylcholine and some other vasodilators. Trends Pharmacol Sci 2:173–176

    CAS  Google Scholar 

  • Furchgott RF (1983) Role of the endothelium in the response of the vascular smooth muscle. Circ Res 53:557–573

    CAS  PubMed  Google Scholar 

  • Furchgott RF (1984) The role of the endothelium in the responses of vascular smooth muscle and drugs. Annu Rev Pharmacol Toxicol 24: 175–195

    CAS  PubMed  Google Scholar 

  • Furchgott RF (1988) Studies on relaxation of rabbit aorta by sodium nitrite: the basis for the proposal that the acid-activated inhibitory factor from bovine retractor penis is inorganic nitrite and the endothelium-derived relaxing factor is nitric oxide. In: Vanhoutte PM (ed) Mechanisms of vasodilatation, vol IV. Raven, New York, pp 401–414

    Google Scholar 

  • Furchgott RF, Vanhoutte PM (1989) Endothelium-derived relaxing and contracting factors. FASEB J 3:2007–2018

    CAS  PubMed  Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle to acetylcholine. Nature 228:373–376

    Google Scholar 

  • Furchgott RF, Cherry PD, Zawadzki JV, Jothianandan D (1984) Endothelial cells as mediators of vasodilation of arteries. J Cardiovasc Pharmacol 6 [Suppl 2]:S336–S343

    PubMed  Google Scholar 

  • Furlong B, Henderson AH, Lewis MJ, Smith JA (1987) Endothelium-derived relaxing factor inhibits in vitro platelet aggregation. Br J Pharmacol 90:687–692

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gerova M, Gero J, Barta E, Dolezel S, Smiesko V, Levicky V (1981) Neurogenic and myogenic control of conduit coronary artery: a possible interference. Basic Res Cardiol 76:503–507

    CAS  PubMed  Google Scholar 

  • Gibson QH, Roughton FJW (1957) The kinetics and equalibria of the reactions of nitric oxide with sheep haemoglobin. J Physiol (Lond) 136:507–526

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gillespie MN, Owasoyo JO, McMurtry IF, O'Brien RF (1986) Sustained coronary vasoconstriction provoked by a peptidergic substance released from endothelial cells in culture. J Pharmacol Exp Ther 236:339–343

    CAS  PubMed  Google Scholar 

  • Goetz KL, Wang BC, Madwed JB, Zhu JL, Leadley RJ (1988) Cardiovascular, renal, and endocrine responses to intravenous endothelin in conscious dogs. Am J Physiol 255:R1064–R1068

    CAS  PubMed  Google Scholar 

  • Gordon JL, Martin W (1983) Endothelium-dependent relaxation of the pig aorta: relationship to stimulation of 86Rb efflux from isolated endothelial cells. Br J Pharmacol 79:531–541

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gorman RR, Bunting S, Miller OV (1977) Modulation of human platelet adenylate cyclase by prostacyclin (PGX). Prostaglandins 13:377–388

    CAS  PubMed  Google Scholar 

  • Goto K, Kasuya Y, Matsuki N, Takuwa Y, Kurihara H, Ishikawa T, Kimura S, Yanagisawa M, Masaki T (1989) Endothelin activates the dihydropyradine-sensitive, voltage-dependent Ca2+ channel in vascular smooth muscle. Proc Natl Acad Sci USA 86:3915–3918

    CAS  PubMed Central  PubMed  Google Scholar 

  • Graier WF, Schmidt K, Kukovetz WR (1990) Effect of sodium fluoride on cytosolic free Ca2+-concentrations and cGMP-levels in endothelial cells. Cell Signal 2:369–375

    CAS  PubMed  Google Scholar 

  • Gräser T, Vanhoutte PM (1991) Contraction of canine coronary arteries to severe hypoxia: role of endothelium, contraction level, and cyclic GMP

    Google Scholar 

  • Griffith TM, Edwards DH (1990) Basal EDRF activity helps to keep the geometrical configuration of arterial bifurcations close to murray optimum. J Theor Biol 146:545–573

    CAS  PubMed  Google Scholar 

  • Griffith TM, Edwards D, Lewis M, Newby A, Henderson A (1984) The nature of endothelium-derived relaxing factor. Nature 308:645–647

    CAS  PubMed  Google Scholar 

  • Griffith TM, Edwards DH, Newby AC, Lewis MJ, Henderson AH (1986) Production of endothelium-derived relaxing factor is dependent upon oxidative phosphorylation and extracellular calcium. Cardiovasc Res 20: 7–12

    CAS  PubMed  Google Scholar 

  • Griffith TM, Edwards DH, Davies RLI, Harrison TJ, Evans KT (1987) EDRF coordinates the behavior of vascular resistance vessels. Nature 329: 442–443

    CAS  PubMed  Google Scholar 

  • Gross SS, Jaffe EA, Levi R, Kilbourn RG (1991) Cytokine-activated endothelial cells express an isotype of nitric oxide synthase which is tetrahydrobiopterin-dependent, calmodulin-independent and inhibited by arginine analogs with a rank-order of potency characteristic of activated macrophages. Biochem Biophys Res Commun 178:823–829

    CAS  PubMed  Google Scholar 

  • Gruetter CA, Barry BK, McNamara DB, Gruetter DY, Kadwitz PJ, Ingnarro LJ (1979) Relaxation of bovine coronary artery and activation of coronary arterial guanylate cyclase by nitric oxide, nitroprusside, and a carcinogenic nitrosamine. J Cyclic Nucleotide Res 5:211–224

    CAS  PubMed  Google Scholar 

  • Gruetter CA, Gruetter DY, Kadowitz PJ, Ignarro LJ (1981) Relationship between cyclic guanosine 3′:5′-monophosphate formation and relaxation of coronary arterial smooth muscle by glycerol trinitrate, nitroprusside, nitrite and nitric oxide: effects of methylene blue and methemoglobin. J Pharmacol Exp Ther 219:181–186

    CAS  PubMed  Google Scholar 

  • Gryglewski RJ, Bunting S, Moncada S, Flower RJ, Vane JR (1976) Arterial walls are protected against deposition of platelet thrombi by a substance (prostaglandin X) which they make from prostaglandin endoperoxides. Prostaglandins 12:685–713

    CAS  PubMed  Google Scholar 

  • Gryglewski RJ, Korbut R, Ocetkiewicz A (1978) De-aggregatory action of prostacyclin in vivo and its enhancement by theophylline. Prostaglandins 15:637–644

    CAS  PubMed  Google Scholar 

  • Gryglewski RJ, Moncada S, Palmer RMJ (1986a) Bioassay of prostacyclin and endothelium-derived relaxing factor (EDRF) from porcine aortic endothelial cells. Br J Pharmacol 87:685–694

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gryglewski RJ, Palmer RMJ, Moncada S (1986b) Superoxide anion is involved in the breakdown of endothelium-derived relaxing factor. Nature 320:454–456

    CAS  PubMed  Google Scholar 

  • Gu X, Liu JJ, Dillon JS, Nayler WG (1989) The failure of endothelin to displace bound, radioactively-labelled, calcium antagonists (PN200/110, D888 and diltiazem). Br J Pharmacol 96:262–264

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hagiwara H, Hare GMT, Johns JA, Hondegnem LM, Sagura M, Inagami T (1988) Sustained endothelin-induced vasoconstriction associated with transiently elevated calcium. Hypertension 12:334 (abstr)

    Google Scholar 

  • Hallam TJ, Jacob R, Merritt JE (1988) Evidence that agonists stimulate bivalent-cation influx into human endothelial cells. Biochem J 255:179–184

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hallam TJ, Pearson JD (1986) Exogenous ATP raises cytoplasmic free calcium in fura-2 loaded piglet aortic endothelial cells. FEBS Lett 207:95–99

    CAS  PubMed  Google Scholar 

  • Han SP, Trapani AJ, Fok KF, Westfall TC, Knuepfer MM (1989) Effects of endothelin on regional hemodynamics in conscious rats. Eur J Pharmacol 159:303–305

    CAS  PubMed  Google Scholar 

  • Haslam RJ, Davidson MML, Lynham JA (1979) Functional significance of the effects of sodium nitroprusside (SNP) and prostaglandin E1 (PGE1) on cyclic nucleotides and protein phosphorylation in human platelets. Fed Proc 38:232 (abstr)

    Google Scholar 

  • Hawkins DJ, Meyrick BO, Murray JJ (1988) Activation of guanylate cyclase and inhibition of platelet aggregation by endothelium-derived relaxing factor released from cultured cells. Biochim Biophys Acta 969:289–296

    CAS  PubMed  Google Scholar 

  • Hay DW (1989) Guinea-pig tracheal epithelium and endothelin. Eur J Pharmacol 171:241–245

    CAS  PubMed  Google Scholar 

  • Hecker M, Mitchell JA, Harris HJ, Katsura M, Thiemermann C, Vane JR (1990) Endothelial cells metabolize NG-monomethyl-L-arginine to L-citrulline and subsequently to L-arginine. Biochem Biophys Res Commun 167:1037–1043

    CAS  PubMed  Google Scholar 

  • Henderson AH, Morgan RO, Newby AC (1987) The inhibition by sodium nitroprusside of ADP-induced calcium influx and calcium mobilization in human platelets. J Physiol (Lond) 387:89P (abstr)

    Google Scholar 

  • Herman AG, Moncada S, Vane JR (1977) Formation of prostacyclin (PGI2) by different layers of arterial wall. Arch Int Pharmacodyn 227:162–163

    CAS  PubMed  Google Scholar 

  • Hibbs JB, Taintor RR, Vavrin Z (1987) Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science 235:473–476

    CAS  PubMed  Google Scholar 

  • Hickey KA, Rubanyi G, Paul RJ, Highsmith RF (1985) Characterization of a coronary vasoconstrictor produced by cultured endothelial cells. Am J Physiol 248:C550–C556

    CAS  PubMed  Google Scholar 

  • Hieda HS, Gomez-Sanchez CE (1990) Hypoxia increases endothelin release in bovine endothelial cells in culture, but epinephrine, norepinephrine, serotonin, histamine and angiotensin II do not. Life Sci 47:247–251

    CAS  PubMed  Google Scholar 

  • Highsmith RF, Aichholz D, Fitzgerald O, Paul R, Rubanyi G, Hickey G (1988) In: Vanhoutte PM (ed) Relaxing and contracting factors. Endothelial cells in culture and production of endothelium-derived constricting factors Humana, Clifton, pp 137–158

    Google Scholar 

  • Hilton SM (1959) A peripheral arterial conducting mechanism underlying dilatation of the femoral artery and concerned in functional vasodilatation in skeletal muscle. J Physiol (Lond) 149:93–111

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirata Y, Yoshimi H, Takaichi S, Yanagisawa M, Masaki T (1988a) Binding and receptor down-regulation of a novel vasoconstrictor endothelin in cultured rat vascular smooth muscle cells. FEBS Lett 239:13–17

    CAS  PubMed  Google Scholar 

  • Hirata Y, Yoshimi H, Takata S, Watanabe TX, Kumagai S, Nakajima K, Sakakibra S (1988b) Cellular mechanism of action by a novel vasoconstrictor endothelin in cultured vascular smooth muscle cells. Biochem Biophys Res Commun 156:186–192

    Google Scholar 

  • Hirata Y, Kanno K, Watanabe TX, Kumagaye S, Nakajima K, Kimura T, Sakakibra S, Marumo F (1990) Receptor binding and vasoconstrictor activity of big endothelin. Eur J Pharmacol 176:225–228

    CAS  PubMed  Google Scholar 

  • Hoeffner U, Feletou M, Flavahan NA, Vanhoutte PM (1989) Canine arteries release two different endothelium-derived relaxing factors. Am J Physiol 257:H330–H333

    CAS  PubMed  Google Scholar 

  • Hoeffner U, Vanhoutte PM (1989) Increases in flow reduce the release of endotheliumderived relaxing factor in the aorta of normotensive and spontaneously hypertensive rats. Am J Hypertension 2:762–767

    CAS  Google Scholar 

  • Hof RP, Reugg UT, Hof A, Vogel A (1985) Sterioselectivity at the calcium channel; opposite action of the enantiomers of a 1,4-dihydropyridine. J Cardiovasc Pharmacol 7:689–693

    CAS  PubMed  Google Scholar 

  • Hogan JC, Lewis MJ, Henderson AH (1988) In vivo EDRF activity influences platelet function. Br J Pharmacol 94:1020–1022

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holtz J, Busse R, Giesler M (1983a) Flow-dependent dilation of canine epicardial coronary arteries in vivo and in vitro: mediated by the endothelium. Naunyn Schmiedebergs Arch Pharmacol 322 [Suppl]:R44

    Google Scholar 

  • Holtz J, Giesler M, Bassenge E (1983b) Two dilatory mechanisms of antianginal drugs on epicardial coronary arteries in vivo: indirect, flow-dependent, endothelium-mediated dilation and direct smooth muscle relaxation. Z Kardiol 72 [Suppl]:98–106

    CAS  PubMed  Google Scholar 

  • Holtz J, Fostermann U, Pohl U, Giesler M, Bassenge E (1984) Flow-dependent, endothelium-mediated dilation of epicardial coronary arteries in conscious dogs: effects of cyclooxygenase inhibition. J Cardiovasc Pharmacol 6:1161–1169

    CAS  PubMed  Google Scholar 

  • Holzmann S (1982) Endothelium-induced relaxation by acetylcholine associated with larger rises in cyclic GMP in coronary arterial strips. J Cyclic Nucleotide Res 8:409–419

    CAS  PubMed  Google Scholar 

  • Hongo K, Kassell NF, Nakagomi T, Sasaki T, Tsukahara T, Ogawa H, Vollmer DG, Lehman RM (1988a) Subarachnoid hemorrhage inhibition of endothelium-derived relaxing factor. J Neurosurg 69:247–253

    CAS  PubMed  Google Scholar 

  • Hongo K, Kassell NF, Nakagomi T, Sasaki T, Tsukahara T, Ogawa H, Vollmer DG, Lehman RM (1988b) Inhibition of spontaneously released endothelium-derived relaxing factor after subarachnoid hemorrhage in the rabbit basilar artery. In: Wilkins RH (ed) Cerebral vasospasm. Raven, New York, pp 151–161

    Google Scholar 

  • Hopkins NK, Gorman RR (1981) Regulation of endothelial cell cyclic nucleotide metabolism of prostacyclin. J Clin Invest 67:540–546

    CAS  PubMed Central  PubMed  Google Scholar 

  • Houston DS, Shepherd JT, Vanhoutte PM (1985) Adenine nucleotides, serotonin, and end-othelium-dependent relaxations to platelets. Am J Physiol (Heart Circ Physiol) 17:H389–H395

    Google Scholar 

  • Houston DS, Shepherd JT, Vanhoutte PM (1986) Aggregating human platelets cause direct contraction and endothelium-dependent relaxation of isolated canine coronary arteries. J Clin Invest 78:539–544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Houston DS, Burnstock G, Vanhoutte PM (1987) Different P2-purinergic receptor subtypes of endothelium and smooth muscle in canine blood vessels. J Pharmacol Exp Ther 241:501–506

    CAS  PubMed  Google Scholar 

  • Hull SS, Kaiser L, Jaffe MD, Sparks HV (1986) Endothelium-dependent flow-induced dilation of canine femoral and saphenous arteries. Blood Vessels 23:181–198

    Google Scholar 

  • Hutchinson PJA, Palmer RMJ, Moncada S (1987) Comparative pharmacology of EDRF and nitric oxide on vascular strips. Eur J Pharmacol 141:445–451

    CAS  PubMed  Google Scholar 

  • Ignarro LJ (1989) Heme-dependent activation of soluble guanylate cyclase by nitric oxide: regulation of enzyme activity by porphorins and metalloporphyrins. Semin Hematol 26:63–76

    CAS  PubMed  Google Scholar 

  • Ignarro LJ, Kadowitz PJ (1985) The pharmacological and physiological role of cyclic GMP in vascular smooth muscle relaxation. Annu Rev Pharmacol Toxicol 25:171–191

    CAS  PubMed  Google Scholar 

  • Ignarro LJ, Wood KS (1987) Activation of purified soluable guanylate cyclase by arachidonic acid requires absence of enzyme-bound heme. Biochim Biophys Acta 928:160–170

    CAS  PubMed  Google Scholar 

  • Ignarro LJ, Lippton H, Edwards JC, Baricos WH, Hyman AL, Kadowitz PJ, Gruetter CA (1981) Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside, and nitric oxide: evidence for involvement of S-nitrosothiols as active intermediates. J Pharmacol Exp Ther 218:739–749

    CAS  PubMed  Google Scholar 

  • Ignarro LJ, Degnan JN, Baricos WH, Kadowitz PJ, Wolin MS (1982) Activation of purified guanylate cyclase by nitric oxide requires heme: comparison of heme-deficient, heme-reconstituted and heme-containing forms of soluable enzyme from bovine lung. Biochim Biophys Acta 718:49–59

    CAS  PubMed  Google Scholar 

  • Ignarro LJ, Burke TM, Wood KS, Wolin MS, Kadowitz PJ (1984a) Association between cyclic GMP accumulation and acetylcholine-elicited relaxation in bovine intrapulmonary artery. J Pharmacol Exp Ther 228:682–690

    CAS  PubMed  Google Scholar 

  • Ignarro LJ, Wood KS, Wolin MS (1984b) Regulation of purified guanylate cyclase by porphyrins and metalloporphyrins: a unifying concept. Adv Cyclic Nucleotide Res 17:267–274

    CAS  Google Scholar 

  • Ignarro LJ, Harrison RG, Wood KS, Kadowitz PJ (1986) Activation of purified soluble guanylate cyclase by endothelium-derived relaxing factor from intrapulmonary artery and vein: stimulation by acetylcholine, bradykinin and arachidonic acid. J Pharmacol Exp Ther 237:893–900

    CAS  PubMed  Google Scholar 

  • Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987a) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ignarro LJ, Byrns RE, Buga GM, Wood KS (1987b) Endothelium-derived relaxing factor (EDRF) released from artery and vein appears to be nitric oxide (NO) or a closely related radical species. Fed Proc 46:644 (abstr)

    Google Scholar 

  • Ignarro LJ, Byrns RE, Wood KS (1988) Biochemical and pharmacological properties of EDRF and its similarity to nitric oxide radical. In: Vanhoutte PM (ed) Mechanisms of vasodilatation. Raven, New York, pp 427–435

    Google Scholar 

  • Ingebrigtsen R, Leraand S (1970) Dilation of a medium-sized artery immediately after local changes of blood pressure and flow as measured by ultrasonic technique. Acta Physiol Scand 79:552–558

    CAS  PubMed  Google Scholar 

  • Inoue A, Yanagisawa M, Kimura S, Kasuya Y, Miyauchi T, Goto K, Masaki T (1989a) The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci USA 86:2863–2867

    CAS  PubMed Central  PubMed  Google Scholar 

  • Inoue A, Yanagisawa M, Takuwa Y, Mitsui Y, Kobayashi M, Masaki T (1989b) The human preproendothelin-1 gene. Complete nucleotide sequence and regulation of expression. J Biol Chem 264:14954–14959

    CAS  PubMed  Google Scholar 

  • Iqbal A, Vanhoutte PM (1988) Flunarizine inhibits endothelium-dependent hypoxic facilitation in canine coronary arteries through an action on vascular smooth muscle. Br J Pharmacol 95:789–794

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jayakody RL, Kappagoda CT, Senaratne MPJ, Sreeharan M (1987) Absence of effect of calcium antagonists on endothelium-dependent relaxation in rabbit aorta. Br J Pharmacol 91:155–164

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jelliffee RW (1962) Dilator and constrictor effects of acetylcholine on isolated rabbit aortic chains. J Pharmacol Exp Ther 135:349–353

    Google Scholar 

  • Johns A, Lategan TW, Lodge NJ, Ryan US, Van Breemen C, Adams D (1987) Calcium entry through receptor-operated channels in bovine pulmonary artery endothelial cells. Tissue Cell 19:733–745

    CAS  PubMed  Google Scholar 

  • Johns RA, Linden JM, Peach MJ (1989) Endothelium-dependent relaxation and cyclic GMP accumulation in rabbit pulmonary artery are selectively impaired by moderate hypoxia. Circ Res 65:1508–1515

    CAS  PubMed  Google Scholar 

  • Johnson RA, Morton DR, Kinner JH, Gorman RR, McGuire JC, Sun FF, Whittaker N, Bunting S, Salmon J, Moncada S, Vane JR (1976) The chemical structure of prostaglandin X (prostacyclin). Prostaglandins 12:915–928

    CAS  PubMed  Google Scholar 

  • Jurkowitz MS, Altschuld RA, Brierley GP, Crague EL (1983) Inhibition of Na+-dependent Ca2+ efflux from heart mitochondria by amiloride analogues. Fed Eur Biochem Soc 162:262–265

    CAS  Google Scholar 

  • Kaiser L, Hull SS, Sparks HV (1986) Methylene blue and ETYA block flow-dependent dilation in canine femoral artery. Am J Physiol 250:H974–H981

    CAS  PubMed  Google Scholar 

  • Kanse SM, Ghatei MA, Polak JM, Bloom SR (1988) Binding and degradation of endothelin by porcine aortic membranes. Regul Pept 22:412

    Google Scholar 

  • Karnushina IL, Spatz M, Bembry J (1983) Cerebral endothelial cell culture: II. Adenylate cyclase response to prostaglandins and their interaction with the adrenergic system. Life Sci 32:1427–1435

    CAS  PubMed  Google Scholar 

  • Karwatowska-Prokopczuk E, Wennmalm A (1990) Effects of endothelin on coronary flow, mechanical performance, oxygen uptake and the formation of purines, and outflow of prostacyclin in the isolated rabbit heart. Circ Res 66:46–54

    CAS  PubMed  Google Scholar 

  • Kato T, Iwama Y, Okumura K, Hashimoto H, Ito T, Satake T (1990) Prostaglandin H2 may be the endothelium-derived contracting factor released by acetylcholine in the aorta of the rat. Hypertension 15:475–481

    CAS  PubMed  Google Scholar 

  • Katusic ZS, Shepherd JT, Vanhoutte PM (1988) Endothelium-dependent contractions to calcium ionophore A23187, arachidonic acid, and acetylcholine in canine basilar arteries. Stroke 19:476–479

    CAS  PubMed  Google Scholar 

  • Katusic ZS, Vanhoutte PM (1986) Anoxic contractions in isolated canine cerebral arteries: Contribution of endothelium-derived factors, metabolites of arachidonic acid, and calcium entry. J Cardiovasc Pharmacol 8 [Suppl8]:S97–S101

    PubMed  Google Scholar 

  • Katusic ZS, Vanhoutte PM (1989) Superoxide anion is an endothelium-derived contracting factor. Am J Physiol 257:H33–H37

    CAS  PubMed  Google Scholar 

  • Katusic ZS, Shepherd JT, Vanhoutte PM (1987) Endothelium-dependent contractions to stretch in canine basilar arteries. Am J Physiol 252:H671–H673

    CAS  PubMed  Google Scholar 

  • Keilin D, Hartree EF (1937) Reaction of nitric oxide with haemoglobin and methemoglobin. Nature 139:548

    CAS  Google Scholar 

  • Kelm M, Schrader J (1990) Control of vascular tone by nitric oxide. Circ Res 66:1561–1575

    CAS  PubMed  Google Scholar 

  • Kilbourn RG, Belloni P (1990) Endothelial cells production of nitrogen oxides in response to interferon γ in combination with tumor necrosis factor, interleukin-1, or endotoxin. J Natl Cancer Inst 82:772–776

    CAS  PubMed  Google Scholar 

  • Kim P, Sundt TM, Vanhoutte PM (1988a) Alterations in endothelium-dependent responsiveness of the canine basilar artery after subarachnoid hemorrhage. J Neurosurg 69: 239–246

    CAS  PubMed  Google Scholar 

  • Kim P, Sundt TM, Vanhoutte PM (1988b) Loss of endothelium-dependent relaxations and maintenance of endothelium-dependent contractions in chronic vasospasm following subarachnoid hemorrhage. In: Wilkins RH (ed) Cerebral vasospasm. Raven, New York, pp 145–149

    Google Scholar 

  • Kim P, Lorenz RR, Sundt TM, Vanhoutte PM (1989) Release of endothelium-derived relaxing factor after subarachnoid hemorrhage. J Neurosurg 70:108–114

    CAS  PubMed  Google Scholar 

  • Kim P, Schini VB, Sundt TM, Vanhoutte PM (1991) Reduced production of cGMP underlies the loss of endothelium-dependent relaxations in the canine basilar artery after subarachnoid hemorrhage. Circ Res 19:58–03

    Google Scholar 

  • Kloeze J (1969) Relationship between chemical structure and platelet aggregation activity of prostaglandins. Biochim Biophys Acta 187:285–292

    CAS  PubMed  Google Scholar 

  • Knowles RG, Salter M, Brooks SL, Moncada S (1990) Anti-inflammatory glucocorticoids inhibit the induction by endotoxin of nitric oxide synthase in the lung, liver and aorta of the rat. Biochem Biophys Res Commun 173:1042–1048

    Google Scholar 

  • Komori K, Suzuki H (1987a) Electrical responses of smooth muscle cells during cholinergic vasodilation in rabbit saphenous artery. Circ Res 61:586–593

    CAS  PubMed  Google Scholar 

  • Komori K, Suzuki H (1987b) Heterogeneous distribution of muscarinic receptors in the rabbit saphenous artery. Br J Pharmacol 92:657–664

    CAS  PubMed Central  PubMed  Google Scholar 

  • Komori K, Lorenz RR, Vanhoutte PM (1988) Nitric oxide, ACh, and electrical and mechanical properties of canine arterial smooth muscle. Am J Physiol 255:H207–H212

    CAS  PubMed  Google Scholar 

  • Komuro I, Kurihara H, Sugiyama T, Yoshizumi M, Takaku F, Yazaki Y (1988) Endothelin stimulates c-fos and c-myc expression and proliferation of vascular smooth muscle cells. FEBS Lett 238:249–252

    CAS  PubMed  Google Scholar 

  • Korthuis RJ, Granger DN (1986) Ischemia-reperfusion injury: role of oxygen-derived free radicals. In: Taylor AE, Matalou S, Ward PA (eds) Physiology of oxygen radicals. American Physiological Society, Bethesda, pp 217–249

    Google Scholar 

  • Koseki C, Imai M, Hirata Y, Yanagisawa M, Masaki T (1989) Autoradiographic distribution in rat tissue of binding sites for endothelin: a neuropeptide? Am J Physiol 256:R858–R866

    CAS  PubMed  Google Scholar 

  • Koyama H, Nishzawa Y, Morii H, Tabata T, Inoue T, Yamaji T (1989) Plasma endothelin levels in patients with uremia. Lancet 1:991–992

    CAS  PubMed  Google Scholar 

  • Kukovetz WR, Holzmann S, Wurm A, Poch G (1979) Evidence for cyclic GMP-mediated relaxant effects of nitro-compounds in coronary smooth muscle. Naunyn Schmiedergs Arch Pharmacol 310:129–138

    CAS  Google Scholar 

  • Kukovetz WR, Poch G, Holtzmann S (1981) Cyclic nucleotides and relaxation of vascular smooth muscle. In: Vanhoutte PM, Leusen I (eds) Vasodilation. Raven, New York, pp 339–353

    Google Scholar 

  • Kuo L, Davis M, Chilian W (1990) Endothelium-dependent, flow-induced dilation of isolated coronary arteries. Am J Physiol 259:H1063–H1070

    CAS  PubMed  Google Scholar 

  • Kurihara H, Yoshizumi M, Sugiyama T, Yamaoki K, Nagai R, Takaku F, Satoh H, Inu J, Yanagisawa M, Masaki T, Yazaki Y (1989) The possible role of endothelin-1 in the pathogenesis of coronary vasospasm. J Cardiovasc Pharmacol 13 [Suppl 5]:S132–S137

    CAS  PubMed  Google Scholar 

  • Lambert TL, Kent RS, Whorton R (1986) Bradykinin stimulation of inositol polyphosphate production in porcine aortic endothelial cells. J Biol Chem 261:15288–15239

    CAS  PubMed  Google Scholar 

  • Langhans T (1886) Beitrage zur normalen und pathologischen Anatomie der Arterien. Arch Pathol Anat Physiol Klin Med 36:187

    Google Scholar 

  • Lansman JB, Hallman TJ, Rink TJ (1987) Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? Nature 325:811–813

    CAS  PubMed  Google Scholar 

  • Laskey R, Adams DJ, Johns A, Rubanyi G, Vanbreemen C (1990) Regulation of [Ca2+]i in endothelial cells by membrane potential. In: Rubanyi G, Vanhoutte PM (eds) Endothelium-derived relaxing factors. Karger, Basel

    Google Scholar 

  • Lawson DL, Mehta JL, Nichols WW, Donnelly WH (1990) Superoxide radical-mediated endothelial injury and vasoconstriction of rat thoracic aortic rings. J Lab Clin Med 115:541–548

    CAS  PubMed  Google Scholar 

  • Lee CY, Chiappinelli VA (1988) Similarity of endothelin to snake venom toxin. Scientific correspondence. Nature 335:303

    CAS  Google Scholar 

  • Leitman DC, Fiscus RR, Murad F (1986) Forskolin, phosphodiesterase inhibitors, and cyclic AMP analogs inhibit proliferation of cultured bovine aortic endothelial cells. J Cell Physiol 127:237–243

    CAS  PubMed  Google Scholar 

  • Lewis MJ, Henderson AH (1987) A phorbol ester inhibits the release of endothelium-derived relaxing factor. Eur J Pharmacol 137:167–171

    CAS  PubMed  Google Scholar 

  • Li LM, Kilbourn RG, Adams J, Fidler IJ (1991) Role of nitric oxide in lysis of tumor cells by cytokine-activated endothelial cells. Cancer Res 51:2531–2535

    CAS  PubMed  Google Scholar 

  • Lidbury PS, Thiemermann C, Thomas GR, Vane JR (1989) Endothelin-3: selectivity as an anti-aggregatory peptide in vivo. Eur J Pharmacol 166:335–338

    CAS  PubMed  Google Scholar 

  • Lie M, Sejersted OM, Kiil F (1970) Local regulation of vascular cross section during changes in femoral arterial blood flow in dogs. Circ Res 27:727–737

    CAS  PubMed  Google Scholar 

  • Lin PJ, Pearson PJ, Schaff HV (1990a) Hypoxia releases a vasoconstrictor substance from the endothelium of the human internal mammary artery. Surg Forum XLI:311–312

    Google Scholar 

  • Lin PJ, Pearson PJ, Schaff HV (1990b) Endothelium-dependent contraction to hypoxia in the human internal mammary artery. Circulation 82 [Suppl]:III-294

    Google Scholar 

  • Lin PJ, Pearson PJ, Cartier HV, Schaff HV (1991) Superoxide anion mediates the endothelium-dependent contractions to serotonin by regenerated endothelium. J Thorac Cardiovasc Surg 102:378–385

    CAS  PubMed  Google Scholar 

  • Lincoln TM (1983) Effects of nitroprusside and 8-bromocyclic GMP on the contractile activity of the rat aorta. J Pharmacol Exp Ther 224:100–107

    CAS  PubMed  Google Scholar 

  • Lindblad LE, Shepherd JT, Vanhoutte PM (1984) Cooling augments platelet-induced contraction of peripheral arteries of the dog. Proc Soc Exp Biol Med 176:119–122

    CAS  PubMed  Google Scholar 

  • Lippton H, Goff J, Hyman A (1988) Effects of endothelin in the systemic and renal vascular beds in vivo. Eur J Pharmacol 155:197–199

    CAS  PubMed  Google Scholar 

  • Lodge NJ, Adams DJ, Johns A, Ryan US, Van Breemen C (1988) Calcium activation of endothelial cells. In: Halpern W, Pegram B, Brayden J, Mackey K, McLaughlin M, Oslo G (eds) Resistance arteries. Perinatology Press, Ithaca, pp 152–161

    Google Scholar 

  • Long CJ, Stone TW (1985) The release of endothelium-derived relaxing factor is calcium-dependent. Blood Vessels 22:205–208

    CAS  PubMed  Google Scholar 

  • Luckhoff A, Busse R (1986) Increased free calcium in endothelial cells under stimulation with adenine nucleotides. J Cell Physiol 126:414–420

    CAS  PubMed  Google Scholar 

  • Lüscher TF, Vanhoutte PM (1986) Endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat. Hypertension 8:344–348

    PubMed  Google Scholar 

  • Lüscher TF, Vanhoutte PM (1990) The endothelium: modulator of cardiovascular function. CRC Press, Boca Raton, pp 1–228

    Google Scholar 

  • MacDonald PS, Read MA, Dusting GJ (1988) Synergistic inhibition of platelet aggregation by endothelium-derived relaxing factor and prostacyclin. Thromb Res 49:437–449

    CAS  PubMed  Google Scholar 

  • MacIntyre DE, Pearson JD, Gordon JL (1978) Localization and stimulation of prostacyclin production in vascular cells. Nature 271:549–551

    CAS  PubMed  Google Scholar 

  • Maggi CA, Giuliani S, Patacchini R, Santicioli P, Giachetti A, Meli A (1990) Further studies on the response of the guinea-pig isolated bronchus to endothelins and sarafotoxin S6b. Eur J Pharmacol 176:1–9

    CAS  PubMed  Google Scholar 

  • Marletta MA (1989) Nitric oxide: biosynthesis and biological significance. Trends Biochem Sci 14:488–492

    CAS  PubMed  Google Scholar 

  • Marletta MA, Yoon PS, Iyengar R, Leaf CD, Wishnok JS (1988) Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry 27:8706–8711

    CAS  PubMed  Google Scholar 

  • Marsden PA, Danthuluri NR, Brenner BM, Ballermann BJ, Brock TA (1989) Endothelin action on vascular smooth muscle involves inositol triphosphate and calcium mobilization. Biochem Biophys Res Commun 158:86–93

    CAS  PubMed  Google Scholar 

  • Martin J, Sanchez-Ferrer CF (1990) Role of endothelium-formed nitric oxide on vascular responses. Gen Pharmacol 21:575–587

    Google Scholar 

  • Martin W (1988) Basal release of endothelium-derived relaxing factor. In: Vanhoutte PM (ed) Relaxing and contracting factors. Humana, Clifton, pp 159–178

    Google Scholar 

  • Martin W, Villani GM, Jothianandan D, Furchgott RF (1985a) Selective blockade of endothelium-dependent and glycerol trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J Pharmacol Exp Ther 232:708–716

    CAS  PubMed  Google Scholar 

  • Martin W, Villani GM, Jothianandan D, Furchgott RF (1985b) Blockade of endothelium-dependent and glycerol trinitrate induced relaxation of rabbit aorta by certain ferrous hemoproteins. J Pharmacol Exp Ther 233:679–685

    CAS  PubMed  Google Scholar 

  • Martin W, Furchgott RF, Villani GM, Jothianandan D (1986a) Depression of contractile response in rat aorta by spontaneously released endothelium-derived relaxing factor. J Pharmacol Exp Ther 237:529–538

    CAS  PubMed  Google Scholar 

  • Martin W, Smith JA, White DG (1986b) The mechanism by which haemoglobin inhibits the relaxatio of rabbit aorta induced by nitrovasodilators, nitric oxide, or bovine retractor penis inhibitory factor. Br J Pharmacol 89:563–671

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsumoto Y, Ozaki Y, Kariya T, Kume S (1990) Potentiating effects of endothelin on platelet activation induced by epinephrine and ADP. Biochem Pharmacol 40:909–911

    CAS  PubMed  Google Scholar 

  • Mayer B, Schmidt K, Humbert P, Bohme E (1989) Biosynthesis of endothelium-derived relaxing factor: a cytosolic enzyme in porcine aortic endothelial cells Ca2+-dependently converts L-arginine into an activator of soluble guanylate cyclase. Biochem Biophys Res Commun 164:678–685

    CAS  PubMed  Google Scholar 

  • Mellion BT, Ignarro LJ, Ohlstein EH, Pontecorvo EG, Hyman AL, Kadowitz PJ (1981) Evidence for the inhibitory role of guanosine 3',5'-monophosphate in ADP-induced human platelet aggregation in the presence of nitric oxide and related vasodilators. Blood 57:946–955

    CAS  PubMed  Google Scholar 

  • Mellion BT, Ignarro LJ, Myers CB, Ohlstein EH, Ballot BA, Hyman AL, Kadowitz PJ (1983) Inhibition of human platelet aggregation by S-nitrosothiols. Heme-dependent activation of soluble guanylate cyclase and stimulation of cyclic GMP accumulation. Mol Pharmacol 23:653–664

    CAS  PubMed  Google Scholar 

  • Menon NK, Wolf A, Zehetgruber M, Bing RJ (1989) An improved chemiluminescence assay suggests non nitric oxide-mediated action of lysophosphatidyl choline and acetylcholine. Proc Soc Exp Biol Med 191:316–319

    CAS  PubMed  Google Scholar 

  • Meyers PR, Guerra R, Harrison DG (1989) Release of NO and EDRF from cultured bovine aortic endothelial cells. Am J Physiol 256:H1030–H1037

    Google Scholar 

  • Miller RC, Mony MC, Schini V, Schoeffter P, Stoclet JC (1984) Endothelial mediated inhibition of contraction and increase in cGMP levels evoked by the alpha-adrenoceptor agonist B-HT 920 in rat isolated aorta. Br J Pharmacol 83:903–908

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller RC, Schoeffter P, Stoclet JC (1985) Insensitivity of calcium-dependent endothelium stimulation in rat isolated aorta to the calcium entry blocker, flunarizine. Br J Pharmacol 85:481–487

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller VM, Vanhoutte PM (1985a) Endothelium-dependent contractions to arachidonic acid are mediated by products of cyclooxygenase in canine veins. Am J Physiol 248:H432–H437

    CAS  PubMed  Google Scholar 

  • Miller VM, Vanhoutte PM (1985b) Endothelial α2-adrenoceptors in canine pulmonary and systemic blood vessels. Eur J Pharmacol 118:123–129

    CAS  PubMed  Google Scholar 

  • Miller VM, Vanhoutte PM (1986) Endothelium-dependent responses in isolated blood vessels of lower vertebrates. Blood Vessels 23:225–235

    CAS  PubMed  Google Scholar 

  • Miller VM, Vanhoutte PM (1988) Enhanced release of endothelium-derived factor(s) by chronic increases in blood flow. Am J Physiol 255 (Heart Circ Physiol 24):H446–H451

    CAS  PubMed  Google Scholar 

  • Miller VM, Aarhus LL, Vanhoutte PM (1986) Modulation of endothelium-dependent responses by chronic alterations of blood flow. Am J Physiol 251 (Heart Circ Physiol 20):H520–H527

    CAS  PubMed  Google Scholar 

  • Miller VM, Komori K, Burnett JC, Vanhoutte PM (1989) Differential sensitivity to endothelin in canine arteries and veins. Am J Physiol 257:H1127–H1131

    CAS  PubMed  Google Scholar 

  • Miller WM, Redfield MM, Burnett JS (1989) Integrated cardiac, renal, and endocrine actions of endothelin. J Clin Invest 83:317–320

    CAS  PubMed Central  PubMed  Google Scholar 

  • Misra HP, Fridovich I (1972) The generation of superoxide radical during the autooxidation of hemoglobin. J Biol Chem 247:6960–6962

    CAS  PubMed  Google Scholar 

  • Moncada S, Gryglewski RJ, Bunting S, Vane JR (1976) An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263:663–667

    CAS  PubMed  Google Scholar 

  • Moncada S, Herman AG, Higgs EA, Vane JR (1977) Differential formation of prostacyclin (PGX or PGI2) by layers of the arterial wall. An explanation for the antithrombotic properties of vascular endothelium. Thromb Res 11:323–344

    CAS  PubMed  Google Scholar 

  • Moncada S, Palmer PMJ, Gryglewski RJ (1986) Mechanism of action of some inhibitors of endothelium-derived relaxing factor. Proc Natl Acad Sci USA 83:9164–9168

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moncada S, Radomski MW, Palmer RMJ (1988) Endothelium-derived relaxing factor. Identification as nitric oxide and role in the control of vascular tone and platelet function. Biochem Pharmacol 37:2495–2501

    CAS  PubMed  Google Scholar 

  • Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    CAS  PubMed  Google Scholar 

  • Moore PK, al-Swayeh OA, Chong NWS, Evans RA, Gibson A (1990) L-NG-nitro arginine (L-NOARG), a novel, L-arginine-reversible inhibitor of endothelium-dependent vasodilation in vitro. Br J Pharmacol 99:408–412

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morgan-Boyde R, Stewart JM, Vavrek RJ, Hassid A (1987) Effects of bradykinin and angiotensin II on intracellular Ca2+ dynamics in endothelial cells. Am J Physiol 253:C588–C598

    Google Scholar 

  • Mulsch A, Bohme E, Busse R (1987) Stimulation of soluable guanylate cyclase by endothelium-derived relaxing factor from cultured endothelial cells. Eur J Pharmacol 135:247–250

    CAS  PubMed  Google Scholar 

  • Mulsch A, Bassenge E, Busse R (1989a) Nitric oxide synthesis in endothelial cytosol: Evidence for a calcium-dependent and calcium-independent mechanism. Naunyn Schimiedebergs Arch Pharmacol 340:767–770

    CAS  Google Scholar 

  • Mulsch A, Luckhoff A, Pohl U, Busse R, Bassenge E (1989b) LY 83583 (6-anilino-5,8-quinolinedione) antagonizes cyclic GMP-dependent inhibition of platelet activation. Naunyn Schmiedebergs Arch Pharmacol 340:119–125

    CAS  PubMed  Google Scholar 

  • Murad F (1986) Cyclic guanosine monophosphate as a mediator of vasodilation. J Clin Invest 78:1–5

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murad F, Mittal CK, Arnold WP, Katsuki S, Kimura H (1978) Guanylate cyclase: activation by azide, nitro compounds, nitric oxide, and hydroxyl radical, and inhibition by hemoglobin and myoglobin. Adv Cyclic Nucleotide Res 9:145–148

    CAS  PubMed  Google Scholar 

  • Murad F, Arnold WP, Mittal CK, Braughler JM (1979) Properties and regulation of guanylate cyclase and some proposed functions for cyclic GMP. Adv Cyclic Nucleotide Res 11:175–204

    CAS  PubMed  Google Scholar 

  • Murad F, Waldman S, Molina C, Bennett B, Leitman D (1987) Regulation and role of guanylate cyclase-cyclic GMP in vascular relaxation. Prog Clin Biol Res 249:65–76

    CAS  PubMed  Google Scholar 

  • Murray CD (1926a) The physiological principle of minimum work applied to the angle of branching of arteries. J Gen Physiol 9:835–841

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murray CD (1926b) The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc Natl Acad Sci USA 12:207–214

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakagomi T, Kassell NF, Sasaki T, Fujiwara S, Lehman M, Joshita H, Nazar GB, Torner JC (1987a) Effects of subarachnoid hemorrhage on endothelium-dependent vasodilation. J Neurosurg 66:915–923

    CAS  PubMed  Google Scholar 

  • Nakagomi T, Kassell NF, Sasaki T, Fujiwara S, Lehman M, Joshita H, Nazar GB, Torner JC (1987b) Impairment of endothelium-dependent vasodilation induced by acetylcholine and adenosine triphosphate following experimental subarachnoid hemorrhage. Stroke 18:482–489

    CAS  PubMed  Google Scholar 

  • Nakahata N, Suzuki T (1981) Effects of prostaglandin E1, I2, and isoproterenol on the tissue cyclic AMP content in longitudinal muscle of rabbit intenstine. Prostaglandins 22:159–165

    CAS  PubMed  Google Scholar 

  • Nishikawa M, Kanamori M, Hioaka H (1982) Inhibition of platelet aggregation and stimulation of guanylate cyclase by an antianginal agent molsidomine and its metabolites. J Pharmacol Exp Ther 220:183–190

    CAS  PubMed  Google Scholar 

  • Nollert MU, Eskin SG, McIntire LV (1990) Shear stress increases inositol triphosphate levels in human endothelial cells. Biochem Biophys Res Commun 170:281–287

    CAS  PubMed  Google Scholar 

  • O'Brien RF, Robbins RJ, McMurtry IF (1987) Endothelial cells in culture produce a vasoconstrictor substance. J Cell Physiol 132:263–270

    PubMed  Google Scholar 

  • Ohlstein EH, Storer B, Nambi P, Given M, Lippton H (1990) Endothelin and platelet function. Thromb Res 57:967–974

    CAS  PubMed  Google Scholar 

  • Olesen SP, Clapham DE, Davies PF (1988) Hemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 331:168–170

    CAS  PubMed  Google Scholar 

  • O'Neil JF (1947) The effects on venous endothelium of alterations in blood flow through the vessels in vein walls, and the possible relation to thrombosis. Ann Surg 3:270–289

    Google Scholar 

  • Palmer RMJ, Moncada S (1989) A novel citrulline-forming enzyme implicated in the formation of nitric oxide by vascular endothelial cells. Biochem Biophys Res Commun 158:348–352

    CAS  PubMed  Google Scholar 

  • Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    CAS  PubMed  Google Scholar 

  • Palmer RMJ, Ashton DS, Moncada S (1988a) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333:664–666

    CAS  PubMed  Google Scholar 

  • Palmer RMJ, Rees DD, Ashton DS, Moncada S (1988b) L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem Biophys Res Commun 153:1251–1256

    CAS  PubMed  Google Scholar 

  • Pareti FI, Carrera D, Mannucci L, Mannucci PM (1978) Effect on platelet functions of derivatives of cyclic nucleotides. Thromb Haemost 39:404–409

    CAS  PubMed  Google Scholar 

  • Patel A, Fairbanks L, Gordge MP, Neild GH (1989) Failure of endothelin to influence in vitro platelet responses. Thromb Res 56:769–770

    CAS  PubMed  Google Scholar 

  • Peach MJ, Singer HA, Izzo NJ, Loeb AL (1987) Role of calcium in endothelium-dependent relaxation of arterial smooth muscle. Am J Cardiol 59:35A–43A

    CAS  PubMed  Google Scholar 

  • Pearson PJ, Schaff HV, Vanhoutte PM (1990a) Acute impairment of endothelium-dependent relaxations to aggregating platelets following reperfusion injury in canine coronary arteries. Circ Res 67:385–393

    CAS  PubMed  Google Scholar 

  • Pearson PJ, Schaff HV, Vanhoutte PM (1990b) Long-term impairment of endothelium-dependent relaxations to aggregating platelets after reperfusion injury in canine coronary arteries. Circulation 81:1921–1927

    CAS  PubMed  Google Scholar 

  • Pearson PJ, Lin PJ, Schaff HV, Vanhoutte PM (1990c) Augmented endothelium-dependent hypoxic contraction in vivo and in vitro following coronary reperfusion injury. Circulation 82 [Suppl]:III-502

    Google Scholar 

  • Pearson PJ, Lin PJ, Schaff HV (1991) Production of endothelium-derived contracting factor is enhanced following coronary reperfusion. Ann Thorac Surg 51:788–793

    CAS  PubMed  Google Scholar 

  • Peter C, Duncan JS (1989) Immunoreactive endothelin in human plasma: marked elevations in cardiogenic shock. Biochem Biophys Res Commun 161:562–7

    Google Scholar 

  • Pinto A, Abraham NG, Mullane KM (1986) Cytochrome P-450-dependent monooxygenase activity and endothelium-dependent relaxations induced by arachidonic acid. J Pharmacol Exp Ther 236:445–451

    CAS  PubMed  Google Scholar 

  • Pirotton S, Raspe F, Demdle D, Erneux C, Boeyanaems JM (1987) Involvement of inositol 1,4,5-triphosphate and calcium in the action of adenine nucleotides on aortic endothelial cells. J Biol Chem 262:17461–17466

    CAS  PubMed  Google Scholar 

  • Pohl U, Busse R (1989) EDRF-induced increase of CGMP in platelets during passage through the coronary vascular bed. Circ Res 65:1798–803

    CAS  PubMed  Google Scholar 

  • Pohl U, Holtz J, Busse R, Bassenge E (1986a) Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension 7:37–44

    Google Scholar 

  • Pohl U, Busse R, Kuon E, Bassenge E (1986b) Pulsatile perfusion stimulates the release of endothelial autocoids. J Appl Cardiol 1:215–235

    CAS  Google Scholar 

  • Popescu LM, Panoiu C, Hinescu M, Nutu O (1985) The mechanism of CGMP-induced relaxation in vascular smooth muscle. Eur J Pharmacol 107:393–394

    CAS  PubMed  Google Scholar 

  • Power RF, Wharton J, Salas SP, Kanse S, Ghatei M, Bloom SR, Polak JM (1989) Autoradiographic localization of endothelin binding sites in human and porcine coronary arteries. Eur J Pharmacol 160:199–200

    CAS  PubMed  Google Scholar 

  • Radomski MW, Palmer RMJ, Moncada S (1987a) Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and aggregating platelets. Br J Pharmacol 92:181–187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Radomski MW, Palmer RMJ, Moncada S (1987b) The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmacol 92:639–646

    CAS  PubMed Central  PubMed  Google Scholar 

  • Radomski MW, Palmer RMJ, Moncada S (1987c) Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet ii:1057–1058

    Google Scholar 

  • Rae GA, Trybulec M, De Nucci G, Vane JR (1989) Endothelin-1 releases eicosanoids from rabbit isolated perfused kidney and spleen. J Cardiovasc Pharmacol 13 [Suppl 5]:S89–S92

    CAS  PubMed  Google Scholar 

  • Rao GH, Krishnamurthi S, Rau L, White JG (1990) Influence of nitric oxide on agonist-mediated calcium mobilization in platelets. Biochem Med Metab Biol 43:271–275

    CAS  PubMed  Google Scholar 

  • Rapoport RM (1986) Cyclic guanosine monophosphate inhibition of contraction may be mediated through inhibition of phosphatidylinositol hydrolysis in rat aorta. Circ Res 58:407–410

    CAS  PubMed  Google Scholar 

  • Rapoport RM, Murad F (1983) Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cyclic GMP. Circ Res 52:352–357

    CAS  PubMed  Google Scholar 

  • Rapoport RM, Draznin MB, Murad F (1983) Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation. Nature 306:174–176

    CAS  PubMed  Google Scholar 

  • Ratych RE, Chuknyiska RS, Bulkley GB (1987) The primary localization of free radical generation after anoxia/reoxygenation in isolated endothelial cells. Surgery 102:122–131

    CAS  PubMed  Google Scholar 

  • Ratz PH, Gleason MM, Flaim SF (1987) Simultaneous measurements of force and calcium uptake during acetylcholine-induced endothelium-dependent relaxation of rabbit thoracic aorta. Circ Res 60:31–38

    CAS  PubMed  Google Scholar 

  • Rees DD, Palmer RMJ, Hodson HF, Moncada S (1989a) A specific inhibitor of nitric oxide formation from L-arginine attenuates endothelium-dependent relaxation. Br J Pharmacol 96:418–424

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rees DD, Palmer RMJ, Moncada S (1989b) The role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci USA 86:H640–H645

    Google Scholar 

  • Resink TJ, Scott-Burden T, Buhler FR (1988) Endothelin stimulates phospholipase C in cultured vascular smooth muscle cells. Biochem Biophys Res Commun 157:1360–1368

    CAS  PubMed  Google Scholar 

  • Richard V, Tanner FC, Tschudi M, Lüscher TF (1990) Different activation of L-arginine pathway by bradykinin, serotonin, and clonidine in coronary arteries. Am J Physiol 259:H1433–H1439

    CAS  PubMed  Google Scholar 

  • Rodbell M (1985) Programmable messengers: a new theory of hormone action. Trends Biochem Sci 7:461–464

    Google Scholar 

  • Rubanyi GM, Vanhoutte PM (1985) Hypoxia releases a vasoconstrictor substance from the canine vascular endothelium. J Physiol (Lond) 364:45–56

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rubanyi GM, Vanhoutte PM (1986) Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am J Physiol 250:H822–H827

    CAS  PubMed  Google Scholar 

  • Rubanyi GM, Vanhoutte PM (1987) Nature of endothelium-derived relaxing factor: are there two relaxing mediators? Circ Res 61 [Suppl II]:H–61–II–67

    Google Scholar 

  • Rubanyi GM, Lorenz RR, Vanhoutte PM (1985a) Bioassay of endothelium-derived relaxing factor(s): inactivation by catecholamines. Am J Physiol 249:H95–H101

    CAS  PubMed  Google Scholar 

  • Rubanyi GM, Schwartz A, Vanhoutte PM (1985b) The effect of diltiazem and verapamil on endothelium-dependent responses in canine blood vessels. Pharmacologist 27:290

    Google Scholar 

  • Rubanyi GM, Romero JC, Vanhoutte PM (1986) Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 250 (Heart Circ Physiol 19):H1145–H1149

    CAS  PubMed  Google Scholar 

  • Sage SO, Van Breemen C, Cannell MB (1991) Sodium-calcium exchange in cultured bovine pulmonary artery endothelial cells. J Physiol (Lond) 440:569–580

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saito A, Shiba R, Kimura S, Yanagisawa M, Goto K, Masaki T (1989) Vasoconstrictor response of large cerebral arteries of cats to endothelin, an endothelium-derived vasoactive peptide. Eur J Pharmacol 162:353–358

    CAS  PubMed  Google Scholar 

  • Sauve R, Parent L, Simoneau C, Roy G (1988) External ATP triggers a biphasic activation process of a calcium-dependent K+ channel in cultured bovine aortic endothelial cells. Pflugers Arch 412:469–481

    CAS  PubMed  Google Scholar 

  • Savitzky JP, Doczi J, Black J, Arnold JD (1978) A clinical safety trial of stroma-free hemoglobin. Clin Pharmacol Ther 23:73–80

    Google Scholar 

  • Schafer AI, Alexander RW, Handin RI (1980) Inhibition of platelet function by organic nitrate vasodilators. Blood 55:649–654

    CAS  PubMed  Google Scholar 

  • Schilling WP, Ritchie AK, Navarro LT, Eskin SG (1988) Bradykinin-stimulated calcium influx in cultured aortic endothelial cells. Am J Physiol 255:H219–H227

    CAS  PubMed  Google Scholar 

  • Shimokawa H, Aarhus LL, Vanhoutte PM (1987) Porcine coronary arteries with regenerated endothelium have a reduced endothelium-dependent responsiveness to aggregating platelets and serotonin. Circ Res 61:256–270

    CAS  PubMed  Google Scholar 

  • Schini VB, Hendrickson H, Heublein DM, Burnett JC, Vanhoutte PM (1989) Thrombin enhances the release of endothelin from cultured porcine aortic endothelial cells. Eur J Pharmacol 165:333–334

    CAS  PubMed  Google Scholar 

  • Schini VB, Junquero DC, Scott-Burden T, Vanhoutte PM (1991) Interleukin-1β induces the production of an L-arginine-derived relaxing factor from cultured smooth muscle cells from rat aorta. Biochem Biophys Res Commun 176:114–121

    CAS  PubMed  Google Scholar 

  • Schini VB, Kim ND, Vanhoutte PM (1991) The basal and stimulated release of EDRF inhibits the contractions evoked by endothelin-1 and endothelin-3 in aortae of the normotensive and spontaneously hypertensive rats. J Cardiovasc Pharmacol 17 (Suppl 7): 5267–5271

    Google Scholar 

  • Schini VB, Vanhoutte PM (1991) Endothelia-1:A potent vasoactive peptide. Pharmacol Toxicol 69:303–309

    CAS  PubMed  Google Scholar 

  • Schoeffler P, Miller RC (1986) Role of sodium-calcium exchange and the effects of calcium entry blockers on endothelium-mediated responses in rat isolated aorta. Mol Pharmacol 30:53–57

    Google Scholar 

  • Schoepflin GS, Picket W, Austen KF, Goetzl EJ (1977) Cyclooxygenase involvement in ascorbic acid stimulation of cyclic GMP levels in human platelets. J Cyclic Nucleotide Res 3:355

    CAS  PubMed  Google Scholar 

  • Schretzenmayr A (1933) Über kreislaufregulatorische Vorgänge an den großen Arterien bei der Muskelarbeit. Pflugers Arch Ges Physiol 232:743–748

    Google Scholar 

  • Shepherd JT, Katusic ZS, Vedernikov Y, Vanhoutte PM (1990) Mechanisms of coronary vasospasm: role of endothelium. J Mol Cell Cardiol 23:125–131

    Google Scholar 

  • Shiba R, Yanagisawa M, Miyauchi T, Ishii Y, Kimura S, Uchiyama Y, Masaki T, Goto K (1989) Elimination of intravenously injected endothelin-1 from the circulation of the rat. J Cardiovasc Pharmacol 13 [Suppl 5]:S98–S101

    CAS  PubMed  Google Scholar 

  • Shimokawa H, Vanhoutte PM (1989a) Hypercholesterolemia causes generalized impairment of endothelium-dependent relaxation to aggregating platelets in porcine arteries. J Am Coll Cardiol 13:1402–1408

    CAS  PubMed  Google Scholar 

  • Shimokawa H, Vanhoutte PM (1989b) Impaired endothelium-dependent relaxation to aggregating platelets and related vasoactive substances in porcine coronary arteries in hypercholesterolemia and atherosclerosis. Circ Res 64:900–914

    CAS  PubMed  Google Scholar 

  • Shimokawa H, Flavahan NA, Lorenz RR, Vanhoutte PM (1988a) Prostacyclin releases endothelium-derived relaxing factor and potentiates its action in coronary arteries of the pig. Br J Pharmacol 95:1197–1203

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimokawa H, Kim P, Vanhoutte PM (1988b) Endothelium-dependent relaxation to aggregating platelets in isolated basilar arteries of control and hypercholesterolemic pigs. Circ Res 63:604–612

    CAS  PubMed  Google Scholar 

  • Shimokawa H, Flavahan NA, Shepherd JT, Vanhoutte PM (1989) Endothelium-dependent inhibition of ergonovine-induced contraction is impaired in porcine coronary arteries with regenerated endothelium. J Am Coll Cardiol 13:31A (abstr)

    Google Scholar 

  • Shirahase H, Usui H, Kurahashi K, Fujiwara M, Fukui K (1986) Possible role of endothelial thromboxane A2 in the resting tone and contractile responses to acetylcholine and arachidonic acid in canine cerebral arteries. J Cardiovasc Pharmacol 10:517–522

    Google Scholar 

  • Siegl PKS, Cragoe EJ, Trumble MJ, Kaczorowski GJ (1984) Inhibition of Na+/Ca2+ exchange in membrane vesicle and papillary muscle preparations from guinea pig heart by analogs of amiloride. Proc Natl Acad Sci USA 81:3238–3242

    CAS  PubMed Central  PubMed  Google Scholar 

  • Siginva M, Inagami T, Have GRT, Johns JA (1989) Endothelin action: by a protein Kinase C inhibitor and involvement of phosphoinositols. Biochem Biophys Res Commun 158, 170–176

    Google Scholar 

  • Silberberg SD, Poder TC, Lecerda AE (1989) Endothelin increases single-channel calcium currents in coronary arterial smooth muscle cells. FEBS Lett 247:68–72

    CAS  PubMed  Google Scholar 

  • Singer HA, Peach MJ (1983) Endothelium-dependent relaxation of rabbit aorta: I. Relaxation stimulated by arachidonic acid. J Pharmacol Exp Ther 226:790–795

    CAS  PubMed  Google Scholar 

  • Singer HA, Peach MJ (1982) Calcium-and endothelial-mediated vascular smooth muscle relaxation in rabbit aorta. Hypertension 4 [Suppl II]:19–25

    CAS  PubMed  Google Scholar 

  • Skidgel RA, Printz MP (1978) PGI2 production by rat blood vessels: diminished prostacyclin formation in veins compared to arteries. Prostaglandins 16:1–16

    CAS  PubMed  Google Scholar 

  • Smiesko V, Kozik J, Dolezel S (1985) Role of the endothelium in control of arterial diameter by blood flow. Blood Vessels 22:247–251

    CAS  PubMed  Google Scholar 

  • Sneddon JM, Vane JR (1988) Endothelium-derived relaxing factor reduces platelet adhesion to bovine endothelial cells. Proc Natl Acad Sci USA 85:2800–2804

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spedding M, Schini V, Schoeffer P, Miller RC (1986) Calcium channel activation does not increase release of endothelium-derived relaxing factors (EDRF) in rat aorta although tonic release of EDRF may modulate calcium channel activity in smooth muscle. J Cardiovasc Pharmacol 8:1130–1137

    CAS  PubMed  Google Scholar 

  • Stasch JP, Steinke W, Kazda S, Neuser D (1989) Autoradiographic localization of 125I-endothelin in rat tissues. Arzneimittelforschung 39:59–61

    CAS  PubMed  Google Scholar 

  • Stemerman MB, Spaet TH (1972) The subendothelium and thrombogenesis. Bull N Y Acad Med 48:289–301

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sternweis PC, Gilman AG (1982) Aluminum: a requirement for activation of the regulatory submit of adenylate cyclase by fluoride. Proc Natl Acad Sci USA 79;4888–4891

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stewart DJ, Pohl U, Bassenge E (1988) Free radicals inhibit endothelium-dependent dilation in the coronary resistance bed. Am J Physiol 255:H765–H769

    CAS  PubMed  Google Scholar 

  • Stuehr DJ, Marletta MA (1985) Mammalian nitrate biosynthesis: mouse macrophages produce nitrate and nitrite in response to escherichia coli lipopolysaccharide. Proc Natl Acad Sci USA 82:7738–7742

    CAS  PubMed Central  PubMed  Google Scholar 

  • Struer DJ, Kwon NS, Nathan CF, Griffith OW, Feldman PL, Wiseman J (1991) Nω-hydroxyl-L-arginine is an intermediate in the biosynthesis of nitric oxide from L-arginine. J Biol Chem 266:6259–6263

    Google Scholar 

  • Takasaki C, Yanagisawa M, Kimura S, Goto K, Masaki T (1988) Scientific correspondence. Nature 335:303

    Google Scholar 

  • Takeda K, Shini V, Stoeckel H (1987) Voltage-activated potassium, but not calcium currents in cultured bovine aortic endothelial cells. Pflugers Arch 410:385–393

    CAS  PubMed  Google Scholar 

  • Takuwa N, Takuwa Y, Yanagisawa M, Yamashita K, Masaki T (1989) A novel vasoactive peptide endothelin stimulates mitogenesis through inositol lipid turnover in Swiss 3T3 fibroblasts. J Biol Chem 264:7 856–7861

    Google Scholar 

  • Tare M, Parkington HC, Coleman HA, Neild TO, Dusting GJ (1990) Hyperpolarization and relaxation of arterial smooth muscle caused by nitric oxide derived from the endothelium. Nature 346:69–71

    CAS  PubMed  Google Scholar 

  • Tateson JG, Moncada S, Vane JR (1977) Effects of prostacyclin (PGX) on cyclic AMP concentrations in human platelets. Prostaglandins 12:685–713

    Google Scholar 

  • Tayeh MA, Marletta MA (1989) Macrophage oxidation of L-arginine to nitric oxide, nitrite, and nitrate. Tetrahydrobiopterin is required as a cofactor. J Biol Chem 264:19654–19658

    CAS  PubMed  Google Scholar 

  • Tesfamariam B, Halpern W, Osol G (1985) Effects of perfusion and endothelium on the reactivity of isolated resistance arteries. Blood Vessels 22:301–305

    CAS  PubMed  Google Scholar 

  • Tesfamariam B, Jakubowski JA, Cohen RA (1989) Contraction of diabetic rabbit aorta caused by endothelium-derived PGH2-TXA2. Am J Physiol 257:H1327–H1333

    CAS  PubMed  Google Scholar 

  • Tesfamariam B, Brown ML, Deykin D, Cohen RA (1990) Elevated glucose promotes generation of endothelium-derived vasoconstrictor prostanoids in rabbit aorta. J Clin Invest 85:929–932

    CAS  PubMed Central  PubMed  Google Scholar 

  • Theimermann C, Lidbury PS, Thomas GR, Vane JR (1989) Endothelin inhibits ex-vivo platelet aggregation in the rabbit. Eur J Pharmacol 158:181–182

    Google Scholar 

  • Theimermann C, Lidbury PS, Thomas GR, Vane JR (1989) Endothelin-1 releases prostacyclin and inhibits ex vivo platelet aggregation in the anesthetized rabbit. J Cardiovasc Pharmacol 13 [Suppl 5]:S138–S141

    Google Scholar 

  • Thiemermann C, May GR, Page CP, Vane JR (1990) Endothelin-1 inhibits platelet aggregation in vivo: a study with 111indium-labelled platelets. Br J Pharmacol 99:303–308

    CAS  PubMed Central  PubMed  Google Scholar 

  • Toda N (1979) Acetylcholine-induced relaxation in isolated dog cerebral arteries. J Pharmacol Exp Ther 209:352–358

    CAS  PubMed  Google Scholar 

  • Topouzis S, Pelton JT, Miller RC (1989) Effects of calcium entry blockers on contractions evoked by endothelin, [Ala3,11] endothelin and [Ala1,15] endothelin in rat isolated aorta. Br J Pharmacol 98:669–677

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vallance P, Collier J, Moncada S (1989) Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet 2:997–1004

    CAS  PubMed  Google Scholar 

  • Vane JR Prostacyclin in the cardiovascular system in health and disease. In: Schrok K (ed) Prostaglandins and other eicosanoids in the cardiovascular system. Karger, Basel pp 7–28

    Google Scholar 

  • Vanhoutte PM (1976) Effects of anoxia and glucose depletion on isolated veins of the dog. Am J Physiol 230:1261–1268

    CAS  PubMed  Google Scholar 

  • Vanhoutte PM (1991) Hypercholesterolemia, atherosclerosis and release of endothelium-derived relaxing factor by aggregating platelets. Eur Heart J 12:25–32

    CAS  PubMed  Google Scholar 

  • Vanhoutte PM, McGoon MD (1986) The endothelial cell. In: Bergofsky EH (ed) Abnormal pulmonary circulation. Churchill-Livingstone, New York

    Google Scholar 

  • Vanhoutte PM, Shimokawa H (1989) Endothelium-derived relaxing factor and coronary vasospasm. Circulation 80:1–9

    CAS  PubMed  Google Scholar 

  • Vanhoutte PM, Auch-Schwelk W, Boulanger C, Janssen PA, Katusic ZS, Komori K, Miller VM, Schini VB, Vidal M (1989) Does endothelin-1 mediate endothelium-dependent contractions during anoxia? J Cardiovasc Pharmacol 13 [Suppl 5]:S124–S128

    CAS  PubMed  Google Scholar 

  • Van Nueten JM, Van Beek JV, Vanhoutte PM (1980) Inhibitory effect of lidoflazine on contractions of isolated canine coronary arteries caused by norepinephrine, 5-hydroxytryptamine, high potassium, anoxia, and ergonovine maleate. J Pharmacol Exp Ther 213:176–179

    Google Scholar 

  • Van Renterghem C, Vigne P, Barhanin J, Schmid-Alliana A, Frelin C, Lazdunski M (1988) Molecular mechanism of action of the vasoconstrictor peptide endothelin. Biochem Biophys Res Commun 157:977–985

    PubMed  Google Scholar 

  • Voyno-Yasenetskaya TA, Tkachuk VA, Cheknyova EG, Panchenko MP, Grigorian GY, Vavrek RJ, Stewart JM, Ryan US (1989) Guanine nucleotide-dependent, pertussis toxin-insensitive regulation of phosphoinositide turnover by bradykinin in bovine pulmonary artery endothelial cells. FASEB J 3:44–51

    CAS  PubMed  Google Scholar 

  • Walder CE, Thomas GR, Thiemermann C, Vane JR (1989) The hemodynamic effects of endothelin-1 in the pithed rat. J Cardiovasc Pharm 13 (Suppl 5) 593–597

    Google Scholar 

  • Waldman SA, Murad F (1987) Cyclic GMP synthesis and function. Pharmacol Rev 39:163–196

    CAS  PubMed  Google Scholar 

  • Hwang PM, Glatt CE, Bredt DS, Yellen G, Snyder SH, A Novel K+ channel with unique localizations in mammalian brain: Molecular cloning characterization Nevron 8:473–481 1992

    CAS  Google Scholar 

  • Warner T, DeNucci G, Vane JR (1988) Release of EDRF by endothelium in the rat isolated perfused mesentery. Br J Pharmacol 95 [Suppl]:723 (abstr)

    Google Scholar 

  • Warner TD, Mitchell JA, De Nucci G, Vane JR (1989) Endothelin-1 and endothelin-3 release EDRF from isolated perfused arterial vessels of the rat and rabbit. J Cardiovasc Pharmacol 13 [Suppl 5]:S85–S88

    CAS  PubMed  Google Scholar 

  • Weinheimer G, Wagner B, Osswald H (1986) Interference of phorbol esters with endothelium-dependent vascular smooth muscle relaxation. Eur J Pharmacol 130:319–322

    CAS  PubMed  Google Scholar 

  • Weksler BB, Ley CW, Jaffe BA (1978) Stimulation of endothelial cell prostaglandin production by thrombin, trypsin, and the ionophore A23187. J Clin Invest 62:923–930

    CAS  PubMed Central  PubMed  Google Scholar 

  • Werns SW, Shea MJ, Lucchesi BR (1976) Free radicals and myocardial injury: pharmacologic implications. Circulation 74:1–5

    Google Scholar 

  • Whorton AR, Willis CE, Kent RS, Young SL (1984) The role of calcium in the regulation of prostacyclin synthesis by porcine aortic endothelial cells. Lipids 19:17–24

    CAS  PubMed  Google Scholar 

  • Whorton AR, Collawan JB, Montgomery ME, Young SL, Kent RS (1985) Arachidonic acid metabolism in cultured aortic endothelial cells. Effect of CAMP and 3-isobutyl-1-methylxanthine. Biochem Pharmacol 34:119–123

    CAS  PubMed  Google Scholar 

  • Winquist RJ, Bunting PB, Schofield TL (1985) Blockade of endothelium-dependent relaxation by the amiloride analog dichlorobenzamil: possible role of Na+/Ca2+ exchange in the release of endothelium-derived relaxing factor. J Pharmacol Exp Ther 235:644–650

    CAS  PubMed  Google Scholar 

  • Wolin MS, Wood KS, Ignarro LJ (1982) Guanylate cyclase from bovine lung: A kinetic analysis of the regulation of the purified soluble enzyme by protoporphyrin. IX, J Biol Chem 257:13312–13320

    CAS  Google Scholar 

  • Wright CE, Fozard JR (1988) Regional vasodilation is a prominent feature of the hemodynamic response to endothelin in anesthetized, spontaneously hypertensive rats. Eur J Pharmacol 155:201–203

    CAS  PubMed  Google Scholar 

  • Yanagisawa M, Masaki T (1989) Molecular biology and biochemistry of the endothelins. Trends Pharmacol Sci 10:374–378

    CAS  PubMed  Google Scholar 

  • Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T (1988a) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415

    CAS  PubMed  Google Scholar 

  • Yanagisawa M, Inoue A, Ishikawa T, Kasuya Y, Kimura S, Kumagaye SI, Nakajima K, Watanabe TX, Sakakibra S, Goto K, Masaki T (1988b) Primary structure, synthesis, and biological activity of rat endothelin, an endothelium-derived vasoconstrictor peptide. Proc Natl Acad Sci USA 85:6964–6967

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yanagisawa M, Inoue A, Takuwa Y, Mitsui Y, Kobayashi M, Masaki T (1989) The human preproendothelin-1 gene: possible regulation by endothelial phosphoinositide turnover signaling. J Cardiovasc Pharmacol 13 [Suppl 5]:S13–S17

    CAS  PubMed  Google Scholar 

  • Yoshizumi M, Kurihara H, Sugiyama T, Takaku F, Yanagisawa M, Masaki T, Yazaki Y (1989) Hemodynamic shear stress stimulates endothelin production by cultured endothelial cells. Biochem Biophys Res Common 161:859–864

    CAS  Google Scholar 

  • Young MA, Vatner SF (1987) Blood flow-and endothelium-mediated vasomotion of iliac arteries in conscious dogs. Circ Res 61 [Suppl II]:II–88–II–93

    Google Scholar 

  • Yuan X-J, Tod ML, Rubin LJ, Blaustein MP (1990) Contrasting effects of hanoxia as tension in rat pulmonary and mesenteric arteries. Am J Physiol 259:H281–H289

    CAS  PubMed  Google Scholar 

  • Zellers TM, Shimokawa H, Yunginger J, Vanhoutte, PM (1991) Heterogeneity of endothelium-dependent and endothelium-independent responses to aggregating platelets in porcine pulmonary arteries. Circ Res 68:1437–1445

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this chapter

Cite this chapter

Pearson, P.J., Vanhoutte, P.M. (1993). Vasodilator and vasoconstrictor substances produced by the endothelium. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 122. Reviews of Physiology, Biochemistry and Pharmacology, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0035273

Download citation

  • DOI: https://doi.org/10.1007/BFb0035273

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56380-8

  • Online ISBN: 978-3-540-47547-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics