Skip to main content

Communication complexity

  • Invited Papers
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1997 (MFCS 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1295))

Abstract

We discuss some aspects of two-party and multi-party communication complexity theory. The topics include a sample from the long list of connections of communication complexity to other models of computation which provide strong motivation to the study of this subject; separation results for restricted models such as simultaneous and one-way communication; some counter-intuitive upper bounds in these models; a new model called “communication with help,” and a lower bound technique in this model, based on discrete Fourier analysis and multi-color discrepancy.

Most of the recent results surveyed are joint work with my former and current students Anna Gál, Tom Hayes, Peter Kimmel, Satya V. Lokam.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Ambainis: Upper Bounds on Multiparty Communication Complexity of Shifts. 13th Symp. on Theoretical Aspects of Comp. Sci., Springer Lecture Notes In Comp. Sci. 1046 (1996) 631–642.

    Google Scholar 

  2. A. Ambainis: Communication Complexity in a 3-Computer Model. Algorithmica 16 (1996), 298–301.

    Google Scholar 

  3. A. Ambainis, S. V. Lokam: Improved bounds for 3-player generalized addressing. Private communication, 1996.

    Google Scholar 

  4. N. Alon, J. H. Spencer: The Probabilistic Method. John Wiley & Sons, Inc, 1992.

    Google Scholar 

  5. L. Babai: The Fourier Transform and Equations Over Finite Abelian Groups, Lecture Notes, version 1.2., Univ. of Chicago, December 1989

    Google Scholar 

  6. L. Babai, A. Gál, P. Kimmel, S. V. Lokam: Simultaneous Messages vs. Communication. Updated version of [BKL], Univ. Chicago Tech. Rep. 96-23, November 1996.

    Google Scholar 

  7. L. Babai, T. Hayes, P. Kimmel: The cost of the missing bit: communication complexity with help. Manuscript, June 1997.

    Google Scholar 

  8. L. Babai, P. Kimmel: Randomized simultaneous messages: solution of a problem of Yao in communication complexity. Univ. Chicago Tech Report, March 1996. 12th IEEE Symp. on Structure in Complexity Theory (1997), to appear.

    Google Scholar 

  9. L. Babai, P. Kimmel, S. V. Lokam: Simultaneous Messages vs. Communication. 12th Symposium on Theoretical Aspects of Comp. Sci., Springer Lecture Notes in Comp. Sci. 900 (1995) 361–372.

    Google Scholar 

  10. L. Babai, N. Nisan, M. Szegedy: Multiparty Protocols, Pseudorandom Generators for Logspace and Time-Space Trade-offs. Journal of Comp. and Sys. Sci. 45 (1992) 204–232. (Prelim. version 21st ACM STOC (1989) 1–11.)

    Article  Google Scholar 

  11. R. Beigel, J. Tarui: On ACC. 32nd IEEE FOCS (1991) 783–792.

    Google Scholar 

  12. J. Bourgain, A. Wigderson. Private communication by Avi Wigderson, Feb. 1996. Cf. [BK] for details.

    Google Scholar 

  13. A. K. Chandra, M. L. Furst, R. J. Lipton: Multiparty protocols. 15th ACM STOC (1983) 94–99.

    Google Scholar 

  14. B. Chor, O. Goldreich: Unbiased bits from sources of weak randomness and probabilistic communication complexity. SIAM J. Comp. 17 (1988) 230–261. (Prelim. version: 26th FOGS (1985) 429–442.)

    Article  Google Scholar 

  15. B. Chor, O. Goldreich, E. Kushilevitz, M. Sudan: Private Information Retrieval. 36th IEEE FOCS (1995) 523–531.

    Google Scholar 

  16. P. Erdős, R. L. Graham, E. Szemerédi: On sparse graphs with dense long paths. Computers and Math. with Appl. 1 (1975) 365–369.

    Article  Google Scholar 

  17. H. D. Gröger, G. Turán: On linear decision trees computing boolean functions. 18th ICALP, Springer Lecture Notes in Comp. Sci. 510 (1991) 707–719.

    Google Scholar 

  18. V. Grolmusz: The BNS Lower Bound for Multi-Party Protocols is Nearly Optimal. Information and Computation 112 (1994) 51–54.

    Article  Google Scholar 

  19. V. Grolmusz. Harmonic Analysis, Real Approximation, and the Communication Complexity of Boolean Functions. Proc. COCOON 1996.

    Google Scholar 

  20. V. Grolmusz. Separating the Communication Complexities of MOD m and MOD p Circuits. 33rd IEEE FOCS (1992) 278–287.

    Google Scholar 

  21. V. Grolmusz: A Weight-Size Trade-Off for Circuits with MOD m Gates. 26th ACM STOC (1994) 68–74.

    Google Scholar 

  22. A. Hajnal, W. Maass, P. Pudlák, M. Szegedy, G. Turán: Threshold circuits of bounded depth. 28th IEEE FOCS (1987) 99–110.

    Google Scholar 

  23. J. Håstad, M. Goldmann: On the Power of Small-Depth Threshold Circuits. Computational Complexity 1 (1991) 113–129.

    Article  Google Scholar 

  24. M. Karchmer, R. Raz, A. Wigderson: On proving super-logarithmic depth lower bounds via the direct sum in communication complexity. 6th IEEE Symp. on Structure in Complexity Theory (1991) 299–304.

    Google Scholar 

  25. M. Karchmer and A. Wigderson. Monotone circuits for connectivity require super-logarithmic depth. SIAM J. on Disc. Math. 3 (1990) 255–265. (Prelim. version: 20th ACM STOC (1988) 539–550.)

    Article  Google Scholar 

  26. E. Kushilevitz, N. Nisan: Communication Complexity. Cambridge University Press, 1997.

    Google Scholar 

  27. I. Kremer, N. Nisan, D. Ron: On Randomized One-Round Communication Complexity. 27th ACM STOC (1995) 596–605.

    Google Scholar 

  28. M. Krause, S. Waack: Variation ranks of communication matrices and lower bounds for depth-two circuits having symmetric gates with unbounded fan-in. Math. Sys. Theory 28 (1995) 553–564. (Prelim. version: 32nd IEEE FOGS (1991) 777–782.)

    Article  Google Scholar 

  29. L. Lovász: Communication Complexity: A Survey. In: Paths, flows, and VLSI-layout. (B. Korte, ed.) Springer-Verlag, 1990, pp. 235–265.

    Google Scholar 

  30. S. V. Lokam: Algebraic Methods in Computational Complexity: Arithmetic Circuits, Communication Complexity, and Interactive Proof Systems. Ph.D. Thesis, University of Chicago, August 1996

    Google Scholar 

  31. M. Luby, B. Veličković, A. Wigderson: Deterministic approximate counting of depth-2 circuits. Proc. 2nd Israel Symp. on Theory and Computing Systems, 1993, pp. 18–24.

    Google Scholar 

  32. K. Mehlhorn, E.M. Schmidt: Las Vegas is better than determinism in VLSI and distributed computing. 14th ACM STOC (1982) 330–337.

    Google Scholar 

  33. M. Naor. Private communication, 1994, cited in [KNR]. [Ne] I. Newman. Private communication, 1994, cited in [KNR].

    Google Scholar 

  34. I. Newman: Private vs. common random bits in communication complexity. Info. Proc. Letters 39 (1991) 67–71.

    Article  Google Scholar 

  35. I. Newman, M. Szegedy: Public vs. Private Coin Flips in One Round Communication Games. 28th ACM STOC (1996) 561–570.

    Google Scholar 

  36. N. Nisan: The communication complexity of threshold gates. In: Combinatorics, Paul Erdős is Eighty (D. Miklós, T. Szőnyi, V. T. Spós, eds.), Vol. 1. Bolyai Society Mathematical Studies 1, Budapest 1993(distributed by the A. M. S.), pp. 301–315.

    Google Scholar 

  37. N. Nisan, A. Wigderson: Rounds in Communication Complexity Revisited. SIAM J. Comp. 22 (1993) 211–219. (Prelim. version: 23rd ACM STOC (1991) 419–429.)

    Article  Google Scholar 

  38. R. Paturi and J. Simon: Probabilistic communication complexity. J. Comp. Sys. Sci. 33 (1986) 106–123. (Prelim. version: 25th IEEE FOCS (1984) 118–126.)

    Article  Google Scholar 

  39. P. Pudlák: Large communication in constant depth circuits. Combinatorica 14 (1994) 203–216.

    Article  Google Scholar 

  40. P. Pudlák, V. Rödl, J. Sgall: Boolean circuits, tensor ranks and communication complexity. SIAM J. Comp., to appear.

    Google Scholar 

  41. R. Raz, P. McKenzie: Separation of the Monotone NC Hierarchy. Manuscript, 1997.

    Google Scholar 

  42. R. Raz, A. Wigderson: Monotone circuits for matching require linear depth. J. ACM 39 (1992) 736–744. (Prelim. version: 22nd ACM STOC (1990) 287–292.)

    Article  Google Scholar 

  43. V. P. Roychowdhury, A. Orlitsky, K. Y. Siu: Lower bounds on threshold and related circuits via communication complexity. IEEE Trans. Info. Theory 40 (1994), 467–474.

    Article  Google Scholar 

  44. C. D. Thompson: Area-time complexity for VLSI. 11th ACM STOC (1979), 81–88.

    Google Scholar 

  45. L. G. Valiant: Graph theoretic arguments in low-level complexity. 6th Symp. MFCS (1977),162–176.

    Google Scholar 

  46. F. Vatan: Some lower and upper bounds for algebraic decision trees and the separation problem. 7th IEEE Symp. Structure in Complexity Theory (1992) 295–304.

    Google Scholar 

  47. U.V. Vazirani: Strong communication complexity or generating quasirandom sequences from two communicating semirandom sources. Combinatorica 7 (1987) 375–392.

    Google Scholar 

  48. A. C.-C. Yao. Some Complexity Questions Related to Distributed Computing. Proc. of the 11th ACM STOC, 1979, pp. 209–213.

    Google Scholar 

  49. A. C.-C. Yao. Lower Bounds by Probabilistic Arguments. Proc. of the 24th IEEE FOCS, 1983, pp. 420–428.

    Google Scholar 

  50. A. C-C. Yao. On ACC and Threshold Circuits. 31st IEEE FOCS (1990) 619–627.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Igor Prívara Peter Ružička

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Babai, L. (1997). Communication complexity. In: Prívara, I., Ružička, P. (eds) Mathematical Foundations of Computer Science 1997. MFCS 1997. Lecture Notes in Computer Science, vol 1295. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0029945

Download citation

  • DOI: https://doi.org/10.1007/BFb0029945

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63437-9

  • Online ISBN: 978-3-540-69547-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics