Skip to main content

Metric uncertainty and nonlinear feedback stabilization

  • Conference paper
  • First Online:
Feedback Control, Nonlinear Systems, and Complexity

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 202))

Abstract

In this paper we define a generalization of the gap metric for nonlinear systems. We prove two results which specialize to known results for linear systems. First, we show that a feedback system remains stable if the distance between the plant and its perturbation is less than the inverse of the norm of a certain parallel projection operator. Second, we show that every “continuously robust” metric on nonlinear systems is equivalent to the metric introduced in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Berkson, Some metrics on the subspaces of a Banach space, Pac. J. Math., 13, 7–22, 1963.

    Google Scholar 

  2. C.A. Desoer and M. Vidyasagar, Feedback systems: Input-output properties, Academic Press: New York, 1975.

    Google Scholar 

  3. F. De Mari and R. Ober, Topological Aspects of Robust Control, Control of Uncertain Systems, ed. Hinrichsen and Mårtensson, Birkhauser, pp. 69–82, 1990.

    Google Scholar 

  4. J.C. Doyle, T.T. Georgiou, and M.C. Smith, The parallel projection operators of a nonlinear feedback system, Systems & Control Letters, 20, 79–85, 1993.

    Google Scholar 

  5. C. Foias, T.T. Georgiou, and M.C. Smith, Geometric techniques for robust stabilization of linear time-varying systems, Proceedings of the 1990 IEEE Conf. on Decision and Control, pp. 2868–2873, December 1990; Robust stability of feedback systems: A geometric approach using the gap metric, SIAM Journal on Control and Optimization, 31, 1518–37, 1993.

    Google Scholar 

  6. T.T. Georgiou, Differential stability and robust control of nonlinear systems, Mathematics of Control, Signals and Systems, 6, 289–307, 1993.

    Google Scholar 

  7. T.T. Georgiou and M.C. Smith, Optimal robustness in the gap metric, IEEE Trans. on Automat. Control, 35, 673–686, 1990.

    Google Scholar 

  8. J. Hammer, Nonlinear systems, stabilization, and coprimeness, Int. J. Control, 42, 1–20, 1985.

    Google Scholar 

  9. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag: New York, 1966.

    Google Scholar 

  10. J.L. Massera and J.J. Schäffer, Linear differential equations and functional analysis, I, Annals of Mathematics, 67, 517–573, 1958.

    Google Scholar 

  11. M. Safonov, Stability and Robustness of Multivariable Feedback System, MIT Press, 1980.

    Google Scholar 

  12. I.W. Sandberg, On the L 2-boundedness of solutions of nonlinear functional equations, Bell Sys. Tech. J., 43, 1581–1599, 1964.

    Google Scholar 

  13. J.S. Shamma, The necessity of the small-gain theorem for time-varying and nonlinear systems, IEEE Trans. on Automat. Control, 36, 1138–1147, 1991.

    Google Scholar 

  14. E.D. Sontag, Smooth stabilization implies coprime factorization, IEEE Trans. on Automat. Control, 34, 435–443, 1989.

    Google Scholar 

  15. W.A. Sutherland, Introduction to Metric and Topological Spaces, Oxford Science Publications, 1975.

    Google Scholar 

  16. M.S. Verma, Coprime fractional representations and stability of non-linear feedback systems, Int. J. Control, 48, 897–918, 1988.

    Google Scholar 

  17. M. Vidyasagar, H. Schneider and B. Francis, Algebraic and topological aspects of feedback stabilization, IEEE Trans. on Automat. Control, 27, 880–894, 1982.

    Google Scholar 

  18. G. Vinnicombe, Measuring the robustness of feedback systems, Engineering Dept., Cambridge Univ., Ph.D. thesis, December 1992.

    Google Scholar 

  19. G. Zames, On the input-output stability of time-varying nonlinear feedback systems. Part I: Conditions using concepts of loop gain, conicity, and positivity, IEEE Trans. on Automat. Control, 11, 228–238, 1966.

    Google Scholar 

  20. G. Zames, On the input-output stability of time-varying nonlinear feedback systems. Part II: Conditions involving circles in the frequency plane and sector nonlinearities, IEEE Trans. on Automat. Control, 11, 465–476, 1966.

    Google Scholar 

  21. G. Zames and A.K. El-Sakkary, Unstable systems and feedback: The gap metric, Proceedings of the Allerton Conference, pp. 380–385, October 1980.

    Google Scholar 

  22. S.Q. Zhu, The gap topology for nonlinear systems, Proceedings of the American Control Conference, Baltimore, pp. 2114–2118, June 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bruce Allen Francis Allen Robert Tannenbaum

Additional information

Dedicated to George Zames on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag London Limited

About this paper

Cite this paper

Georgiou, T.T., Smith, M.C. (1995). Metric uncertainty and nonlinear feedback stabilization. In: Francis, B.A., Tannenbaum, A.R. (eds) Feedback Control, Nonlinear Systems, and Complexity. Lecture Notes in Control and Information Sciences, vol 202. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0027672

Download citation

  • DOI: https://doi.org/10.1007/BFb0027672

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19943-4

  • Online ISBN: 978-3-540-39364-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics