Skip to main content

Conditions for the formation of prominences as inferred from optical observations

  • Conference paper
  • First Online:
Dynamics of Quiescent Prominences

Part of the book series: Lecture Notes in Physics ((LNP,volume 363))

Abstract

In the optical region of the electromagnetic spectrum, the conditions most frequently associated with the formation of prominences are: (1) the existence of opposite polarity photospheric magnetic fields on opposing sides of a prominence, (2) a coronal arcade that connects the magnetic fields on opposing sides of a prominence, (3) a transverse magnetic field configuration in the chromospheric and photospheric polarity inversion zones that is approximately perpendicular to the direction of maximum magnetic field gradient between adjacent patches of opposite polarity line-of-sight magnetic flux, (4) in active regions or decaying active regions, the alignment of chromospheric fibrils in a polarity inversion zone approximately parallel to the transverse magnetic field component and parallel to the long axis of the future prominence, (5) the long-term (hours to days) converging flow of small patches of opposite polarity magnetic flux towards a common polarity inversion zone, and (6) the cancellation of encountering patches of magnetic flux of opposite polarity at a photospheric polarity inversion boundary (interpreted as the transport of magnetic flux upwards or downwards through the photosphere). Because these are observed conditions found from magnetograms and filtergrams at various wavelengths, they do not necessarily represent independent physical conditions. Although none of these conditions have proven to be individually sufficient for prominence formation, a combination of 3 of these conditions might prove to be both necessary and sufficient. The following hypothesis is offered for study and evaluation: condition (2) and the combination of conditions (5) and (6), if dynamically maintained for a sufficient length of time, will invariably result in the formation of a prominence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avignon, Y., Martres, M., Pick, M.: 1964, Ann. Astrophys., 27, 23.

    Google Scholar 

  • Babcock, H.W. and Babcock, H.D.: 1955, Astrophys. J. 121, 349.

    Google Scholar 

  • Bohlin, J.D.: 1977, in Zirker (ed.), Coronal Holes and High Speed Wind Streams, Colorado Associated University Press, p. 59–60.

    Google Scholar 

  • Bruzek, A. and Durant, C.: 1977, Illustrated Glossary for Solar-Terrestrial Physics, p. 63–65.

    Google Scholar 

  • Davis, J.M. and Krieger, A.S.: 1982, Solar Phys. 80, 295.

    Google Scholar 

  • d'Azambuja, L. and d'Azambuja, M.: 1948, Annales de l'Observatoire de Paris, Tome VI.

    Google Scholar 

  • Ding, Y. J., Hagyard, M.J., DeLoach, A.C., Hong, Q.F., and Liu, X.P.: 1987, Solar Phys. 109, 307.

    Google Scholar 

  • Foukal, P.: 1971a, Solar Phys. 19, 59.

    Google Scholar 

  • Foukal, P.: 1971b, Solar Phys. 20, 298.

    Google Scholar 

  • Gaizauskas, V. 1990, this volume.

    Google Scholar 

  • Gary, G.A. and Hagyard, M.J.: 1990, Solar Phys. in press.

    Google Scholar 

  • Giovanelli, R.G.: 1982, Solar Phys. 77, 27.

    Google Scholar 

  • Hagyard, M., Venkatakrishnan, P. and Smith, J.B. Jr.: 1990, Astrophys. J. Sup., in press.

    Google Scholar 

  • Hermans, L.M. and Martin, S.F.: 1986, in A. Poland (ed.), Coronal and Prominence Plasmas, NASA Conference Publication 2442, p.369.

    Google Scholar 

  • Hirayama, T.: 1985, Solar Phys. 100, 415.

    Google Scholar 

  • Howard, R.F.: 1959, Astrophys. J., 130, 193.

    Google Scholar 

  • Howard, R.F. and Harvey, J.W.: 1964, Astrophys. J., 139, 1328.

    Google Scholar 

  • Howard, R. and LaBonte, B.J.: 1981, Solar Phys. 74, 131.

    Google Scholar 

  • Kawaguchi, I.: 1967, Solar Phys. 1, 420.

    Google Scholar 

  • Kopp, R.A. and Pneuman, G.W: 1976, Solar Phys. 50, 85.

    Google Scholar 

  • Kurokawa, H., Hanaoka, Y., Shibata, K. and Uchida, Y.: 1987, Solar Phys. 108, 261.

    Google Scholar 

  • Kuijpers, J.: 1990, to be published in Plasma Phenomena in the Solar Atmosphere, 1989 Cargese workshop, eds. M.A. Dubois and D. Gresillon.

    Google Scholar 

  • Leighton, R.B.: 1964, Astropys. J. 140, 1547.

    Google Scholar 

  • Leroy, J.L. and Servajean, R.: 1966, Ann. Astrophys. 29, 263.

    Google Scholar 

  • Levine, R.H.: 1977, in Zirker (ed.), Coronal Holes and High Speed Wind Streams, Colorado Associated University Press, p. 103–143.

    Google Scholar 

  • Livi, S.H., Martin, S., Wang, H. and Ai, G.: Solar Phys. 121, 197.

    Google Scholar 

  • Malherbe, J.-M.: 1987, Doctoral Thesis, University of Paris VII.

    Google Scholar 

  • Malherbe, J.-M.: 1989, E.R. Priest (ed.), Dynamics and Structures of Quiescent Solar Prominences, Kluwer Academic Publishers, p. 115.

    Google Scholar 

  • McIntosh, P.S., Krieger, A.S., Nolte, J.T., and Vaiana, G.: 1976, Solar Phys. 49, 57.

    Google Scholar 

  • McQueen, R.M., Sime, D.G. and Picat, J.-P.: Solar Phys. 83, 103.

    Google Scholar 

  • Maksimov, V.P. and Ermakova, L.V.:1986, Contributions Skalnate Pleso, 15, 65.

    Google Scholar 

  • Martin, S.F.: 1973, Solar Phys. 31, 3.

    Google Scholar 

  • Martin, S.F.: 1979, Solar Phys. 64, 165.

    Google Scholar 

  • Martin, S.F.: 1988, Solar Phys. 117, 243.

    Google Scholar 

  • Martin, S.F.: 1990, in J.O. Stenflo (ed.) Solar Photosphere: Structure, Convection and Magnetic Fields, I.A.U., p. 129.

    Google Scholar 

  • Martin, S.F.: 1986, in A. Poland (ed.), Coronal and Prominence Plasmas, NASA Conference Publication 2442, p. 73.

    Google Scholar 

  • Martin, S.F., Livi, S.H.B., and Wang, J.: 1985, Australian J. Physics, 38, 929

    Google Scholar 

  • Martres, M.J., Michard, R., Soru-Iscovici, I.: 1966, Ann. Astrophys. 29, 245.

    Google Scholar 

  • Mosher, J.M.: 1977, Ph. D. Thesis, California Institute of Technology.

    Google Scholar 

  • Newkirk, G. Jr.: 1971, in Macris (ed.), Physics of the Solar Corona, p. 73.

    Google Scholar 

  • Prata, S.W.: 1971, Solar Phys. 20, 310.

    Google Scholar 

  • Priest, E.R.: 1989, (ed.), Dynamics and Structures of Quiescent Solar Prominences, Kluwer Academic Publishers

    Google Scholar 

  • Rompolt, B. and Bogdan, T.:1986, in A. Poland (ed.), Coronal and Prominence Plasmas, NASA Conference Publication 2442, p. 81.

    Google Scholar 

  • Schmahl, E.J., Mouradian, Z. Soru-Escaut, I. and Martres, M.J. 1982, Solar Phys. 81, 91.

    Google Scholar 

  • Serio, S., Vaiana, G.S., Godoli, G., Motta, S., Pirronello, V. and Zappala, R.A.: 1978, Solar Phys. 59, 65.

    Google Scholar 

  • Shelke, R.N. and Pande, M.C.: 1983, Bull. Astr. Soc. India, 11, 327.

    Google Scholar 

  • Smith, S.F.: 1968, in Kiepenheuer (ed.) Structure and Development of Solar Active Regions, IAU Symp. 35, p. 267.

    Google Scholar 

  • Smith, S.F.: 1971, (ed.) Howard, Solar Magnetic Fields, IAU Symposium, p. 323.

    Google Scholar 

  • Stenflo, J.O.: 1972, Solar Phys. 23, 307.

    Google Scholar 

  • Tandberg-Hanssen, E.: 1974, Solar Prominences, D. Reidel Pub. Co., p. 78–106.

    Google Scholar 

  • Tandberg-Hanssen, E.: 1979, (ed.) E. Jensen, P. Maltby, and F.Q. Orrall, Physics of Solar Prominences, IAU Colloq. No. 44, p. 139.

    Google Scholar 

  • Tang, F.: 1986, Solar Phys. 105, 399.

    Google Scholar 

  • Vaiana, G.S., Krieger, A.S. and Timothy, A.F.: 1973, Solar Phys. 32, 81.

    Google Scholar 

  • van Ballegooijen, A.A. and Martens, P.C.H.: 1989, Astrophys. J. 343, 971.

    Google Scholar 

  • Venkatakrishnan, P., Hagyard, M., and Hathaway, D.H.: 1989, Solar Phys. 122, 215.

    Google Scholar 

  • von Kluber, H.: 1932, Z. Astrophys. 4, 1.

    Google Scholar 

  • von Kluber, H.: 1961, Mon Not. Roy. Astron. Soc. 123, 61.

    Google Scholar 

  • Waldmeier, M.: 1941, Ergebnisse und Probleme der Sonnenforschung, Leipzig, p. 234.

    Google Scholar 

  • Waldmeier, M.: 1970, Solar Physics, 15, 167.

    Google Scholar 

  • Webb, D.F., McIntosh, P.S., Nolte, J.T., and Solodyna, C.V.: 1978, Solar Phys. 58, 389.

    Google Scholar 

  • Webb, D.F. and Zirin, H.: 1981, Solar Phys. 69, 99.

    Google Scholar 

  • Zirin, H.: 1972, Solar Phys. 22, 34

    Google Scholar 

  • Zirin, H. and Wang, H.: 1989, Solar Phys. 119, 245.

    Google Scholar 

  • Zirker, J.B.: 1989, Solar Phys. 119, 341.

    Google Scholar 

  • Zwaan, C.: 1978, Solar Phys. 60, 213.

    Google Scholar 

  • Zwaan, C.: 1985, in R. Muller (ed.), Lecture Notes in Physics, Springer Verlag, Berlin, Vol. 233, p. 263.

    Google Scholar 

  • Zwaan, C.: 1987, Ann. Rev. Astron. Astrophys. 25, 83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

V. Ruždjak E. Tandberg-Hanssen

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Martin, S.F. (1990). Conditions for the formation of prominences as inferred from optical observations. In: Ruždjak, V., Tandberg-Hanssen, E. (eds) Dynamics of Quiescent Prominences. Lecture Notes in Physics, vol 363. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0025641

Download citation

  • DOI: https://doi.org/10.1007/BFb0025641

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52973-6

  • Online ISBN: 978-3-540-46293-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics