Skip to main content

Model treatments of the heat conductivity of heterogeneous polymers

  • Chapter
  • First Online:
Thermal and Electrical Conductivity of Polymer Materials

Part of the book series: Advances in Polymer Science ((POLYMER,volume 119))

Abstract

Basic physical concepts and limitations of current approaches to the theoretical description of the composition dependence of heat conductivity of microheterogeneous polymer materials (MHM) are reviewed. All “pragmatic” approaches (i.e., those assuming the existence of a infinitely thin, “mathematical” interface between the components) fail to account explicitly for salient structural features of MHM such as the onset of an “infinite” cluster of a disperse component at the percolation threshold, and the transition of a portion of a continuous component into a structurally different “boundary interphase” (BI). Among the “physical” approaches, it is apparently the Step-by-Step-Averaging (SSA) model which accounts simultaneously for both cited structural features of MHM. The SSA model was shown to provide a quantitative description of the experimental data available by an appropriate choice of relevant BI parameters (i.e., thickness and “partial” heat conductivity): at the present stage, however, the numerical values of the latter should be considered as fitting variables, rather than true material properties of BI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. In the present context, the term “structureless” simply implies absence of macrodefects in both components (e.g., cracks between impinged spherulites in semi-crystalline polymers, or polymer-free voids between filler particles in filled polymers), perfect adhesion on the interface between components being assumed

    Google Scholar 

  2. Lipatov YuS (ed) (1986) Physical Chemistry of Multi-Component Polymer Systems. Naukova Dumka, Kiev, vols 1 and 2 (in Russian)

    Google Scholar 

  3. Deryaguin BV, Churayev NV, Myuller VM (1987) Surface Forces. Nauka, Moscow, 399 p (in Russian)

    Google Scholar 

  4. Lipatov YuS (1977) Physical Chemistry of Filled Polymers. Khimia, Moscow, 303 p (in Russian)

    Google Scholar 

  5. Hence, Δr is, in fact, not so much an intrinsic property of each combination of two components, as rather an “effective parameter”, the numerical value of which will also heavily depend on the sensitivity and accuracy of the experimental technique used to measure the property of interest.

    Google Scholar 

  6. Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45(4): 574–582

    Google Scholar 

  7. Shklovsky BI, Efros AL (1979) Electronic Properties of Semi-Conducting Alloys. Nauka, Moscow, 235 p (in Russian)

    Google Scholar 

  8. Dulnev GN, Zarichnyak YuP (1974) Thermal Conductivity of Mixtures and Composites. Energhia, Leningrad (in Russian)

    Google Scholar 

  9. Misnar A (1968) Thermal Conductivity of Solids, Liquids, Gases and Their Mixtures. Mir, Moscow (in Russian)

    Google Scholar 

  10. Shermergor TD (1977) Theory of Elasticity of Microheterogeneous Media. Nauka, Moscow (in Russian)

    Google Scholar 

  11. Khoroshun LP, Maslov BP (1980) Computer Techniques for Calculation of the Physical Mechanical Properties of Composites. Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  12. Hashin Z (1983) Analysis of composite materials. J Appl Mech 50: 481–505

    Google Scholar 

  13. Maxwell JC (1873) Treatise on Electricity and Magnetism. Oxford University Press, Oxford

    Google Scholar 

  14. Lorenz L (1880) Ueber die Refraktion Konstante. Wied Ann 11: 70–75

    Google Scholar 

  15. Lorentz HA (1880) Ueber die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Koerperdichte. Wied Ann 9: 641–648

    Google Scholar 

  16. Malyshev VA, Malyshev PV (1987) Estimation of the effective dielectric permittivity of a periodic array of solid bodies. Dokl Acad Nauk UkrSSR, ser A,N 12: 48–53

    Google Scholar 

  17. Rayleigh LM (1882) On the influence of obstacles arranged in rectangular order upon the properties of a medium. Phil Mag 34: 19–22

    Google Scholar 

  18. Meredith RE, Tobias CW (1960) Resistance to potential flow through cubical array of spheres. J Appl Phys 31: 1270–1273

    Google Scholar 

  19. Bruggeman DAG (1935) Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. Ann Phys 24: 636–650

    Google Scholar 

  20. Odelevsky VI (1951) Calculation of the effective conductivity of heterogeneous systems. Zhurn Tekh Fiz 21: 667–685

    Google Scholar 

  21. Kondorsky EK (1951) On the theory of coercetive force and magnetic susceptibility of ferromagnetic powders. Dokl Acad Nauk USSR 80: 197–200

    Google Scholar 

  22. Weinberg AK (1966) Magnetic susceptibility, electric conductivity, dielectric permittivity and heat conductivity of media with spherical and ellipsoidal inclusions. Dokl Acad Nauk USSR 169: 543–547

    Google Scholar 

  23. Fricke HA (1924) A mathematical treatment of the electric conductivity of disperse systems. Phys Rev 24: 12–15

    Google Scholar 

  24. Webman I, Jortner Z, Cohen MN (1976) Electronic transport in alkalitungsten bronzes. Phys Rev 13: 213–224

    Google Scholar 

  25. Webman I, Jortner Z, Cohen MN (1975) Numerical simulation of electrical conductivity in microscopically inhomogeneous materials. Phys Rev ser B 11: 2885–2892

    Google Scholar 

  26. Buyevich YuA, Korneev YuA, Shelikova IN (1975) On the heat and mass transfer in a disperse flux. Inzh Fiz Zhurn 30: 979–982

    Google Scholar 

  27. Buyevich YuA, Korneev YuA (1976) Effective heat conductivity of a disperse medium at low Pekle numbers. Inzh Fiz Zhurn 31: 607–612

    Google Scholar 

  28. Esksler BS (1979) On the effective heat conductivity and viscosity of disperse media. Inzh Fiz Zhurn 37: 110–117

    Google Scholar 

  29. Buyevich YuA (1973) On the effective heat conductivity of grainy materials. Zhurn Prikl Matem Tekhn Fiz N 4: 57–66

    Google Scholar 

  30. Davis RH (1986) The effective thermal conductivity of a composite material with spherical inclusions. Int J Thermophys 7: 609–620

    Google Scholar 

  31. Lichtenecker K, Rother K (1931) Die Herleitung des logarithmischen Mischungsgesetzes des allgemeinen Prinzipien der stationaren Stroemung. Phys Z 32: 3255–3267

    Google Scholar 

  32. Herring C (1960) Inhomogeneities in electrical and galvanometric measurements. J Appl Phys 31: 1939–1953

    Google Scholar 

  33. Kudinov VA, Moizhes BYa (1972) Effective conductivity of non-homogeneous, isotropic media. Zhurn Tekhn Fiz 42: 591–599

    Google Scholar 

  34. Hashin Z, Shtrikman SA (1962) A variational approach to the theory of the effective magnetic permeability of multi-phase materials. J Appl Phys 33: 3125–3131

    Google Scholar 

  35. Yermakov GA, Fokin AG, Shermergor TD (1974) Calculation of the bounds for effective dielectric permittivities of non-homogeneous dielectrics. Zhurn Tekhn Fiz 44: 249–254

    Google Scholar 

  36. Rosen BW, Hashin Z (1970) Effective thermal expansion coefficient and specific heat of composite materials. Int J Eng Sci 8: 157–161

    Google Scholar 

  37. Dykhne AM (1967) On the calculation of kinetic coefficients of media with random inhomogeneities. Zhurn Tekhn Fiz 52: 264–267

    Google Scholar 

  38. Kazantsev VP (1979) Variational estimates of the effective conductivity of media with macroscopic inclusions. Izv VUZ'ov, Fiz N 5: 53–59

    Google Scholar 

  39. Stepanov SV (1970) On the heat conductivity of two-phase systems. Inzh Fiz Zhurn 18: 247–252

    Google Scholar 

  40. Beran M, Molyneux L (1965) Boundaries of effective properties of binary heterogeneous disordered systems. Quart Appl Math 24: 107–114

    Google Scholar 

  41. Phan-Thien N, Milton GW (1982) New bounds on the effective thermal conductivity of N-phase materials. Proc Roy Soc ser A 380: 333–348

    Google Scholar 

  42. Levin VM (1968) On the estimates of effective conductivity coefficients of multi-phase materials. Prikl Mekh Tekhn Fiz N 2: 52–55

    Google Scholar 

  43. Novikov VV (1986) Two-bounds estimates of heat and electrical conductivity of micro-heterogeneous materials. Inzh Fiz Zhurn 50: 866–867

    Google Scholar 

  44. Hardi GG, Littlewood DE, Polya G (1948) Inequalities. Gosizdatinlit, Moscow (in Russian)

    Google Scholar 

  45. Kolmogorov AN, Fomin SV (1981) Elements of the Theory of Functions and of Functional Analysis. Nauka, Moscow (in Russian)

    Google Scholar 

  46. Uitrin AI, Belousov VYa (1985) Probabilistic-statistical methods of calculation and optimization of structural parameters of microheterogeneous composite materials. Poroshkov Metallurghia N 3: 69–73

    Google Scholar 

  47. Jackson JL (1968) Transport coefficients of composite materials. J Appl Phys 39: 1733–1736

    Google Scholar 

  48. Corriell SR, Jackson JL (1968) Bounds on transport coefficients of two-phase materials. J Appl Phys 39: 2329–2334

    Google Scholar 

  49. Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13: 213–225

    Google Scholar 

  50. Frey S (1932) Ueber die elektrische Leitfaehigkeit binarer Aggregat Z Elektrochem 38: 260–274

    Google Scholar 

  51. Dulnev GN, Novikov VV (1977) Effective conductivity of systems with interpenetrating structures. Inzh Fiz Zhurn 33: 271–274

    Google Scholar 

  52. Novikov VV (1983) The effective thermal expansion coefficient of non-homogeneous materials. Inzh Fiz Zhurn 44: 969–977

    Google Scholar 

  53. Novikov VV (1985) On the estimates of effective elasticity moduli of non-homogeneous materials. Prikl Mekh Tekhn Fiz N 5: 146–153

    Google Scholar 

  54. Privalko VP, Novikov VV, Yanovsky YuG (1991) Principles of Thermophysics and Rheophysics of Polymer Materials. Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  55. Hammersley LM (1983) Origins of percolation theory: in “Percolation Structures and Processes”, ed. by Deutscher G, Zallen R, Adler J. Adam Hilger, Bristol, and the Israel Physical Society, Jerusalem, ch 2

    Google Scholar 

  56. Zallen R (1983) The Physics of Amorphous Solids. Wiley, New York-Chichester-Brisbane-Toronto-Singapore, ch 4

    Google Scholar 

  57. Stauffer D (1985) Introduction to Percolation Theory. Taylor & Francis, London and Philadelphia

    Google Scholar 

  58. Dulnev GN, Novikov VV (1979) Conductivity of non-homogeneous systems. Inz Fiz Zhurn 36: 900–909

    Google Scholar 

  59. Dulnev GN, Novikov VV (1983) Percolation theory and conductivity of non-homogeneous media. The basic model of a non-homogeneous medium. Inzh Fiz Zhurn 45: 136–141

    Google Scholar 

  60. Skal AS, Shklovsky VI (1974) Topology of an infinite cluster in the percolation theory and the theory of jump-like conductivity. Fiz Tekhn Poluprovodnikov 8: 1585–1592

    Google Scholar 

  61. Vinogradov AP, Sarychev AK (1983) The structure of conducting channels and the metal-dielectric transition in composites. Zhurn Eksper Teor Fiz 85: 1144–1151

    Google Scholar 

  62. Torquato S (1987) Thermal conductivity of disordered heterogeneous media from the microstructure. Rev Chem Eng 4: 151–204

    Google Scholar 

  63. Shah N, Ottino JM (1986) Effective transport properties of disordered, multi-phase composites. Application of real-space renormalization group theory. Chem Eng Sci 41: 283–296

    Google Scholar 

  64. Dulnev GN, Novikov VV (1979) On the conductivity of filled heterogeneous systems. Inzh Fiz Zhurn 37: 657–661

    Google Scholar 

  65. Novikov VV (1988) Influence of interphase layer and of structural parameters on the conductivity coefficient of polymer composites. Composites Polym Mater N 38: 17–23

    Google Scholar 

  66. Guyon E (1982) Percolation et matiere en grains. Compt Rend 294: 115–130

    Google Scholar 

  67. Ziman JM (1979) Models of Disorder. Cambridge University Press, London-New York-Melbourne

    Google Scholar 

  68. Novikov VV, Klimenko VS (1988) Heat conductivity of pseudoalloys. Tekhn Vysok Temper N 2: 10–13

    Google Scholar 

  69. Novikov VV, Dmitriev MV, Shapovalov IP, Tartakovskaya LN (1987) Estimation of the effective dielectric properties of glass-ceramics with account of structural parameters. Tekhn Sredstv Svyazi N 3: 264–269

    Google Scholar 

  70. Kusy R, Corneliussen R (1975) The thermal conductivity of nickel and copper dispersed in poly(vinyl chloride). Polym Eng Sci 15: 107–112

    Google Scholar 

  71. Kanari K (1977) Thermal conductivity of composite materials. Kobunshi 26: 557–561

    Google Scholar 

  72. Kline DJ (1961) Thermal conductivity studies of polymers. J Polym Sci 50: 441–450

    Google Scholar 

  73. Sundstrom DW, Lee Y-D (1972) Thermal conductivity of polymers filled with particulate solids. J Appl Polym Sci 16: 3159–3167

    Google Scholar 

  74. Hansen D, Tomkiewicz R (1975) Heat conduction in metal-filled polymers: the role of particle size, shape and orientation. Polym Eng Sci 15: 353–356

    Google Scholar 

  75. Privalko VP (1983) Thermophysical properties of filled polymers. Prom Teplotekhnika N 3: 66–76

    Google Scholar 

  76. Shut NI, Sichkar TG, Vozny PA (1985) Influence of the boundary layer structure on heat conduction and molecular mobility of filled epoxy systems. Composites Polym Mater N 24: 18–21

    Google Scholar 

  77. Nielsen LE (1974) The thermal and electrical conductivity of two-phase systems. Ind Eng Chem Fund 13: 17–20

    Google Scholar 

  78. Bigg DM (1979) Mechanical, thermal, and electrical properties of metal fiber-filled polymer composites. Polym Eng Sci 19: 1188–1192

    Google Scholar 

  79. Mamunya EP, Davidenko VV, Lebedev EV (1991) Properties of functionally filled polymer system in function of properties and content of disperse fillers. Composites Polym Mater N 50: 37–47

    Google Scholar 

  80. Rymarenko NL, Voitenko AI, Novikov VV, Privalko VP (1992) Composition-dependent properties of microheterogeneous polymeric materials: thermal conductivity of filled polyethylene. Ukr Polym J 1: 259–266

    Google Scholar 

  81. Garrett KW, Rosenberg HM (1974) The thermal conductivity of epoxy resin/powder composite materials. J Phys ser D (Appl Phys) 7: 1247–1258

    Google Scholar 

  82. de Araujo FFT, Rosenberg HM (1976) The thermal conductivity of epoxy resin/metal-powder composite materials from 1.7 to 300 K. J Phys ser D (Appl Phys) 9: 665–675

    Google Scholar 

  83. Hakansson B, Ross RG (1990) Effective thermal conductivity of binary dispersed composites over wide ranges of volume fraction, temperature and pressure. J Appl Phys 68: 3285–3292

    Google Scholar 

  84. Kutcherov V, Hakansson B, Ross RG, Backstrom G (1993) Experimental test of theories for the effective thermal conductivity of a dispersed composite. J Appl Phys 71

    Google Scholar 

  85. Hakansson B, Andersson P, Backstrom G (1988) Improved hot-wire procedure for thermophysical measurements under pressure. Rev Sci Instrum 59: 2269–2275

    Google Scholar 

  86. Agari Y, Ueda A, Tanaka M, Nagai S (1990) Thermal conductivity of a polymer filled with particles in the wide range from low to super-high volume content. J Appl Polym Sci 40: 929–941

    Google Scholar 

  87. Agari Y, Ueda A, Nagai S (1991) Thermal conductivities of composites in several types of dispersion systems. J Appl Polym Sci 42: 1665–1669

    Google Scholar 

  88. Yarema GE, Besklubenko YuD, Privalko VP (1982) Thermophysical properties of polystyrene/polycarbonate blends in the melt state under elevated pressures. Dokl Acad Nauk UkrSSR, ser B N 3: 54–57

    Google Scholar 

  89. Yarema GE (1993) Thesis, Institute of Macromolecular Chemistry, Academy of Sciences of Ukraine, Kiev, Ukraine

    Google Scholar 

  90. Agari Y, Ueda A, Nagai S (1992) Thermal conductivity of polyethylene/polystyrene blends containing SEBS block copolymer. J Appl Polym Sci 45: 1957–1966

    Google Scholar 

  91. Agari Y, Ueda A, Nagai S (1993) Thermal conductivities of blends of polyethylene/SEBS block copolymer and polystyrene/SEBS block copolymer. J Appl Polym Sci 47: 331–337

    Google Scholar 

  92. Sumita M, Asai S, Miyadera N et al. (1986) Electrical conductivity of carbon black filled ethylene-vinyl acetate copolymer as a function of vinyl acetate content. Colloid & Polym Sci 264: 212–217

    Google Scholar 

  93. Sumita M, Abe H, Kayaki H, Miyasaka K (1986) Effect of melt viscosity and surface tension of polymers on the percolation threshold of conductive-particle-filled polymeric composites. J Macromol Sci.-Phys ser B 25: 171–184

    Google Scholar 

  94. Levon K, Margolina A, Patashinsky AZ (1993) Multiple percolation in conducting polymer blends. Macromolecules 26: 4061–4063

    Google Scholar 

  95. Galeski A, Milczarek P, Kryszewski M (1977) Heat conduction in a two-dimensional spherulite. J Polym Sci: Polym Phys Ed 15: 1267–1281

    Google Scholar 

  96. Choy CL (1977) Thermal conductivity of polymers. Polymer 18: 984–1004

    Google Scholar 

  97. Choy CL, Luk WH, Chen FC (1978) Thermal conductivity of highly oriented polyethylene. Polymer 19: 155–162

    Google Scholar 

  98. Godovsky YuK (1982) Thermophysics of Polymers. Khimia, Moscow (in Russian)

    Google Scholar 

  99. Barker RE, Jr, Chen RYS, Frost RS (1977) Influence of pressure and chemical structure on the thermal conductivity of vitreous poly(alkyl methacrylates) I. J Polym Sci: Polym Phys Ed 15: 1199–1210

    Google Scholar 

  100. Rekhteta NA (1990) Thesis, Leningrad Institute of Fine Optics and Mechanics, Leningrad, Russia

    Google Scholar 

  101. Privalko VP, Rekhteta NA (1992) Effect of pressure on the thermal conductivity of polymers. J Therm Anal 38: 1083–1102

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this chapter

Cite this chapter

Privalko, V.P., Novikov, V.V. (1995). Model treatments of the heat conductivity of heterogeneous polymers. In: Thermal and Electrical Conductivity of Polymer Materials. Advances in Polymer Science, vol 119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0021280

Download citation

  • DOI: https://doi.org/10.1007/BFb0021280

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58502-2

  • Online ISBN: 978-3-540-49015-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics