Skip to main content

Phase transition in gels of sub-millimeter size induced by interaction with stimuli

  • Chapter
  • First Online:
Responsive Gels: Volume Transitions II

Part of the book series: Advances in Polymer Science ((POLYMER,volume 110))

Abstract

Phase transition in response to infinitesimal change of external stimuli has been observed universally in various gels made of synthetic and natural polymers. The phase transition properties of gels observed in equilibrium and their dynamic and kinetic behavior are determined by the interaction of polymer networks and a liquid. They were extensively studied in the 1980s. Recently, simple technological improvement using gels of sub-millimeter size has made it possible to observe new phenomena, which opens a new scientific field. After a brief introduction to the recent development of investigations using such tiny gels, this paper will describe three principal ways in which gels exhibit phase transition by the interaction with external stimuli. (1) Visible light-induced phase transition in gels. Local heating of a thermoresponsive network by visible light can induce phase transition. (2) Uniaxial stress-induced phase transition in gels. Uniaxial stress by applying weight can change the transition temperature of thermoresponsive gels. (3) Salt effects on the phase transition in non-ionic gels. Adding salts can change the transition temperature and discontinuity. The experimental facts and their interpretation will be proposed on the basis of the mean field equation of state of gels. These principal experiments have been presented in order to demonstrate the recent development of investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. Tanaka T (1978) Phys Rev Letters 40: 820

    Article  Google Scholar 

  2. Tanaka T et al. (1980) Phys Rev Letters 45: 1636

    Article  Google Scholar 

  3. Hrouz J et al. (1981) J Eur Polym J 17: 361

    Article  Google Scholar 

  4. Tanaka T (1981) Sci Am 244: 124

    PubMed  Google Scholar 

  5. Ilavsky M (1982) Macromolecules 15: 782

    Article  Google Scholar 

  6. Tanaka T et al. (1982) Science 218: 467

    Google Scholar 

  7. Ohmine I, Tanaka T (1982) J Chem Phys 77: 5725

    Article  Google Scholar 

  8. Hirokawa Y, Tanaka T (1984) J Chem Phys 81: 6379

    Article  Google Scholar 

  9. Katayama S et al. (1984) 17: 2641

    Google Scholar 

  10. Hirotsu S et al. (1987) J Chem Phys 87: 1392

    Article  Google Scholar 

  11. Mamada A et al. (1990) Macromolecules 23: 1517

    Article  Google Scholar 

  12. Suzuki A, Tanaka T (1990) Nature 346: 345

    Article  Google Scholar 

  13. Tanaka T et al. (1973) J Chem Phys 59: 5151

    Article  Google Scholar 

  14. Tanaka T et al. (1977) Phys Rev Letters 38: 771

    Article  Google Scholar 

  15. Dusek K, Patterson (1968) J Polym Sci 6: 1209

    Article  Google Scholar 

  16. Hirokawa Y et al. (1984) In: Life sciences research rep. 31: 177, Springer, Berlin Heidelberg New York

    Google Scholar 

  17. Tanaka T (1987) In: Structural and dynamics of biopolymers, NATO ASI Series E: 237, Martinus Nijhoff, Dordrecht

    Google Scholar 

  18. Li Y, Tanaka T (1992) Annun Rev Mater Sci 22: 243

    Google Scholar 

  19. DeRossi D et al. (eds) (1991) Polymer gels. Plenum, New York

    Google Scholar 

  20. Osada Y (1987) Adv Polym Sci 82: 1

    Google Scholar 

  21. Ilmain F et al. (1991) Nature 349: 400

    Article  Google Scholar 

  22. Okano T et al. (1990) J Contrl Rel 11: 255

    Article  Google Scholar 

  23. Otake K et al. (1990) Macromolecules 23: 283

    Article  Google Scholar 

  24. Annaka M, Tanaka T (1992) Nature 355: 430

    Article  Google Scholar 

  25. Tanaka T (1990) a private communication

    Google Scholar 

  26. Tanaka T, Fillmore DJ (1979) J Chem Phys 70: 1214

    Article  Google Scholar 

  27. Kokufuta E, Tanaka T (1991) Macromolecules 24: 1605

    Article  Google Scholar 

  28. Kokufuta E et al. (1991) Nature 351: 302

    Article  Google Scholar 

  29. Suzuki A et al. (to be published)

    Google Scholar 

  30. Suzuki A et al. (to be published)

    Google Scholar 

  31. Irie M et al. (1986) Macromolecules 19: 2476

    Article  Google Scholar 

  32. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, New York

    Google Scholar 

  33. Huggins ML (1941) J Chem Phys 9: 440

    Article  Google Scholar 

  34. Flory PJ (1941) J Chem Phys 10: 51

    Article  Google Scholar 

  35. Li Y, Tanaka T (1989) J Chem Phys 90: 5161

    Article  Google Scholar 

  36. Tanaka T et al. (1985) Phys Rev Letters 55: 2455

    Article  Google Scholar 

  37. Matsuo ES et al. (1988) J Chem Phys 89: 1695

    Article  Google Scholar 

  38. Li Y, Tanaka T (1990) J Chem Phys 92: 1365

    Article  Google Scholar 

  39. Horkay F, Zrinyi M (1989) Makromol Chem, Macromol Symp 30: 133

    Google Scholar 

  40. Hirotsu S, Onuki A (1989) J Phys Soc Jpn 58: 1508

    Article  Google Scholar 

  41. Onuki A (1988) J Phys Soc Jpn 57: 699 and 57: 1868

    Article  Google Scholar 

  42. Erman B, Flory PJ (1986) Macromolecules 19: 2342

    Article  Google Scholar 

  43. Long FA, McDevid WF (1952) Chem Rev 51: 119

    Article  Google Scholar 

  44. Kollins KD, Washabaugh MW (1985) Quart Rev Biophys 18: 323

    Google Scholar 

  45. Inomata H et al. (1992) Langmuir 8: 687

    Article  Google Scholar 

  46. Freitas RFS, Cussler EL (1987) Chem Eng Sci 42: 97

    Article  Google Scholar 

  47. Huang X et al. (1988) J Chem Eng Jpn 21: 10

    Google Scholar 

  48. Bailey Jr FE, Callard RW (1959) J Appl Polym Sci 1: 56

    Article  Google Scholar 

  49. Luck WAP (1976) Topics Current Chem 64: 113

    Google Scholar 

  50. Debye P, McAulay J (1925) J Physik Z 26: 22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. Dušek

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this chapter

Cite this chapter

Suzuki, A. (1993). Phase transition in gels of sub-millimeter size induced by interaction with stimuli. In: Dušek, K. (eds) Responsive Gels: Volume Transitions II. Advances in Polymer Science, vol 110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0021134

Download citation

  • DOI: https://doi.org/10.1007/BFb0021134

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56970-1

  • Online ISBN: 978-3-540-47836-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics