Skip to main content

Tail recursion from universal invariants

  • Conference paper
  • First Online:
Category Theory and Computer Science (CTCS 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 530))

Included in the following conference series:

  • 186 Accesses

Abstract

The categorical account of lists is usually given in terms of initial algebras, i.e. head recursion. But it is also possible to define them by interpreting tail recursion by means of the colimit of a loop diagram, i.e. its universal invariant. Parametrised initial algebras always have universal invariants, while the converse holds in the presence of equalisers.

Consequences include categorical descriptions of vectors and matrices, which allow definitions of inner products, transposes and matrix multiplication.

Research supported by The Royal Society of Edinburgh/BP, and NSERC operating grant OGPIN 016.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Bird and P. Wadler, Introduction to Functional Programming International Series in Computer Science, ed: C.A.R. Hoare (Prentice Hall, 1988).

    Google Scholar 

  2. J.R.B. Cockett, List-arithmetic distributive categories: locoi, J. Pure and Appl. Alg. 66 (1990) 1–29.

    Google Scholar 

  3. J.R.B. Cockett, Distributive Theories, in: G. Birtwistle (ed), IV Higher Order Workshop, Banff, 1990, (Springer, 1991).

    Google Scholar 

  4. A note on natural numbers objects in monoidal categories, Studia Logica 48(3) (1989) 389–393.

    Google Scholar 

  5. C.B. Jay, Fixpoint and loop constructions as colimits, preprint.

    Google Scholar 

  6. C.B. Jay, Matrices, monads and the Fast Fourier Transform, in preparation.

    Google Scholar 

  7. G. Jones, Calculating the Fast Fourier Transform, in: G. Birtwistle (ed), IV Higher Order Workshop, Banff, 1990, (Springer, 1991).

    Google Scholar 

  8. J. Lambek and P. Scott, Introduction to higher order categorical logic, Cambridge studies in advanced mathematics 7, Cam. Univ. Press (1986).

    Google Scholar 

  9. S. Mac Lane, Categories for the Working Mathematician (Springer-Verlag, 1971).

    Google Scholar 

  10. E. Moggi, Computational lambda-calculus and monads, Proceedings Fourth Annual Symposium on Logic in Computer Science (1989) 14–23.

    Google Scholar 

  11. R. Paré and L. Roman, Monoidal categories with natural numbers object, Studia Logica 48(3) (1989).

    Google Scholar 

  12. L. Roman, Cartesian categories with natural numbers object, J. of Pure and Appl. Alg. 58 (1989) 267–278.

    Google Scholar 

  13. R.F.C. Walters, Datatypes in distributive categories, Bull. Australian Math. Soc. 40 (1989) 79–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

David H. Pitt Pierre-Louis Curien Samson Abramsky Andrew M. Pitts Axel Poigné David E. Rydeheard

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jay, C.B. (1991). Tail recursion from universal invariants. In: Pitt, D.H., Curien, PL., Abramsky, S., Pitts, A.M., Poigné, A., Rydeheard, D.E. (eds) Category Theory and Computer Science. CTCS 1991. Lecture Notes in Computer Science, vol 530. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0013464

Download citation

  • DOI: https://doi.org/10.1007/BFb0013464

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54495-1

  • Online ISBN: 978-3-540-38413-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics