Skip to main content

Speciation, reactivity and mobility of toxic elements in soil systems

  • Chapter
  • First Online:
Environmental Geochemistry in the Tropics

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 72))

  • 280 Accesses

Abstract

The quality of groundwater, as well as surface waters, is of primary concern in waste and tailings disposal technology. However, due to natural processes at the disposal site, dissolution and mobilization of toxic compounds may occur. In this case, the sorption phenomena in soils play a key role, which determines the transport of toxic compounds to receiving waters, and consequently their fate. This chapter describes the importance of sorption mechanisms, as a result of the type of surface-chemical interaction, on the mobility of toxic chemicals. Specific oxyanion adsorption, metal adsorption and anion exclusion are highlighted. The effects of different physico-chemical parameters on the mobility of arsenic, mercury and nitrate are emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, M.A., and D.T. Malotky. (1979). The adsorption of protolyzable anions on hydrous oxides at the isoelectric pH. J. Colloid Inter. Sci. 72:413–427.

    Google Scholar 

  • Barcellos, C., Lacerda, L. D., Rezende, C. E., Machado, J. (1992). International Seminar Proceedings. As in the Environment its Incidence on Health. p. 59.

    Google Scholar 

  • Barrow, N. J. (1985). Reaction of anions and cations with variable-charge soils. Adv. Agron. 38:183–230.

    Google Scholar 

  • Barrow, N.J. (1974). On the displacement of adsorbed anions from soil: 2. Displacement of phosphate by arsenate. Soil Sci. 117:28–33.

    Google Scholar 

  • Barrow, N.J. (1987). Reactions with variable-charge soils. Developments in Plant and soil sciences. Martinus Nijhoff Publishers, Dordrecht/Boston/Lancaster.

    Google Scholar 

  • Barrow, N.J. (1989). Testing a mechanistic model. IX. Competition between anions for sorption by soil. J. Soil Sci. 40:415–425.

    Google Scholar 

  • Bolan, N.S., and N.J. Barrow. (1984). Modelling the effect of adsorption of phosphate and other anions on the surface charge of variable charge oxides. J. Soil Sci. 35:273–281.

    Google Scholar 

  • Bowden, J.W., A.M. Posner, and J.P. Quirk. (1977). Ionic adsorption on variable charge mineral surfaces: Theoretical charge development and titration curves. Aust. J. Soil Res. 15:121–136.

    Google Scholar 

  • Bresler, E. (1973). Anion exclusion and coupling effects in non-steady transport through unsaturated soils: I. Theory. Soil Sci. Soc. Am. Proc. 37:663–669.

    Google Scholar 

  • Camargo, O. A., J. W. Biggar, and D. R. Nielsen. (1979). Transport of inorganic phosphorus in an alfisol. Soil Sci. Soc. Am. J. 43:884–890.

    Google Scholar 

  • Carageorgos, T. (1993). The chemistry of arsenopyrite in some England soils: metals behaviour upon leaching experiment. Ph.D. Thesis, Univ London, Imperial College.

    Google Scholar 

  • Chapman, D.L. (1913). A contribution to the theory of electrocapillarity. Phil. Mag. 25:475–481.

    Google Scholar 

  • Cleary, D., Thornton, L., Brown, N., Kazantzis, G., Delves, T., Worthington, S., (1994). Mercury in Brazil. Nature, 369:613–614.

    Google Scholar 

  • Craig, P.J. and Moreton, P.A., (1985). The role of speciation in mercury methylation in sediments and water. Environ. Poll. series B, 10:141–158.

    Google Scholar 

  • De Haan, F. A. M., and G. H. Bolt. (1963). Determination of anion adsorption by clays. Soil Sci. Soc. Am. Proc. 27:636–640.

    Google Scholar 

  • Driscoll, C.T., Cheng, Y., Schofield, C.L., Blette, V., Munson, R. and Holsapple, J.G., (1994). The chemistry and bioavailability of mercury in remote Adirondack lakes. International Conference on Mercury as a Global Pollutant. July 10–14. Whistler, British Columbia.

    Google Scholar 

  • Farid, L.H., Machado, J.E.B. and Silva, O.A., (1991). Emission control and mercury recovery from garimpo tailing. In: M.M. Veiga and F.R.C. Fernandes (Editors), Poconé: Um campo de estudos do impacto ambiental do garimpo. CETEM/CNPq, Rio de Janeiro, Brazil, pp. 27–44.

    Google Scholar 

  • Fletcher, P. and Beckett, P.H.T. (1987). The chemistry of heavy metals in digested sewage sludge-II. Heavy metal complexation with soluble organic matter. Water. Res, 21:1163–1172.

    Google Scholar 

  • Fordham, A. W., and K. Norrish. (1979) Arsenate-73 uptake by components of several acidic soils and its implications for phosphate retention. Aust. J. Soil Res. 17:307–316.

    Google Scholar 

  • Frost, R. R., and R. A. Griffin. (1977). Effect of pH on adsorption of arsenic and selenium from landfill leachate by clay minerals. Soil Sci. Soc. Am. J. 41:53–57.

    Google Scholar 

  • Gaudet, J.P., H. Jégat, G. Vachaud, and P.J. Wierenga. (1977). Solute transfer, with exchange between mobile and stagnant water, through unsaturated sand. Soil Sci. Soc. Am. J. 41:665–671.

    Google Scholar 

  • Goldberg, S. (1986). Chemical modeling of arsenate adsorption on aluminum and iron oxide minerals. Soil Sci. Soc. Am. J. 50:1154–1157.

    Google Scholar 

  • Gouy, G. (1910). Sur la constituition de la charge electrique a la surface d'un electrolyte. Ann. Phys. (Paris) 9:457–468.

    Google Scholar 

  • Grahame, D.C. (1947). The electrical double layer and the theory of electrocapillarity. Chem. Rev. 41:441–501.

    Google Scholar 

  • Hem, J.D., (1970). Chemical behaviour of mercury in aqueous media. In: Mercury in the Environment. U. S. Geological Survey, Professional paper, no. 713, Washington D.C., pp. 19–24.

    Google Scholar 

  • Hingston, F.J. (1981). A review of anion adsorption. p. 51–90. In M.A. Anderson and A.J. Rubin (ed.) Adsorption of inorganics at solid-liquid interfaces. Ann Arbor Science Publishers, Ann Arbor, MI.

    Google Scholar 

  • Hingston, F.J., A.M. Posner, and J. P. Quirk. (1972). Anion adsorption by goethite and gibbsite: I. The role of the proton in determining adsorption envelopes. J. Soil Sci., 23:177–192.

    Google Scholar 

  • Huckabee, J.W., Elwood, J.W., Hildebrand, S.G., (1979). Accumulation of mercury in freshwater biota. In: J.O. Nriagu. (Editor), The Biogeochemistry of Mercury in the Environment, pp. 277–302. Elsevier/North Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Iverfeldt, A. and Lindqvist, O., (1986). Atmospheric oxidation of elemental mercury by ozone in the aqueous phase. Am. Environ., vol. 20, no.8, pp. 1567–1573.

    Google Scholar 

  • Jacobs, L. W., J. K. Syers, and D. R. Keeney. (1970). Arsenic sorption by soils. Soil Sci. Soc. Am. Proc., 34:750–754.

    Google Scholar 

  • James, R.V. and J. Rubin. (1986). Transport of chloride ion in a water-unsaturated soil exhibiting anion exclusion. Soil Sci. Soc. Amer. J., 50:1142–1149.

    Google Scholar 

  • Kissel, D. E., J. T. Ritchie, and E. Burnett. (1973). Chloride movement in undisturbed swelling clay soil. Soil Sci. Soc. Am. Proc., 37:21–24.

    Google Scholar 

  • Krupp, H. K., J.W. Biggar, and D. R. Nielsen. (1972). Relative flow rates of salt and water in soil. Soil Sci. Soc. Am. Proc. 36:412–417.

    Google Scholar 

  • Laguitton, D. (1976). Arsenic removal from gold-mine waste waters: basic chemistry of the lime addition method. CIM Bull., p105–109

    Google Scholar 

  • Langford, C.H. and Cook, R.L., (1995). Kinetic versus equilibrium studies for the speciation of metal complexes with ligands from soil and water. Analyst, 120:591–596.

    Google Scholar 

  • Logan, T. J., and E. O. McLean. (1973). Effects of phosphorus application rate, soil properties, and leaching mode on P movement in soil columns. Soil Sci. Soc. Am. Proc. 37:371–374.

    Google Scholar 

  • Luoma, S.N., (1983). Bioavailability of trace metals to aquatic organisms — a review. The Sci. Total Environ., 28:1–22.

    Google Scholar 

  • MacNaughton, M.G. and James, R.O., (1974). Adsorption of aqueous mercury (II) complexes at the oxide/water interface. J. Colloid Interf. Sci., 47:431–440.

    Google Scholar 

  • Melamed, R, Jurinak, J.J., and Dudley, L.M. (1994). Anion exclusion-pore water velocity interaction affecting transport of bromine through an Oxisol. Soil Sci. Soc. Am. J., 58:1405–1410.

    Google Scholar 

  • Melamed, R, Jurinak, J.J., and Dudley, L.M. (1995c). Site disposal simulation for arsenopyrite processing waste: arsenic mobility and retention mechanisms. Proceedings of X Conference on Heavy Metals and The Environment. Hamburg.

    Google Scholar 

  • Melamed, R., Jurinak, J.J., and Dudley, L.M. (1995a). Effect of adsorbed phosphate on transport of arsenate through an Oxisol. Soil Sci. Soc. Am. J., 59:1289–1294.

    Google Scholar 

  • Melamed, R., Villas Bôas, R. C. (1996b). Phosphate-background electrolyte interaction affecting the transport of Hg(II) through a Brazilian Oxisol. The Science of Total Environment. In press.

    Google Scholar 

  • Melamed, R., Villas Bôas, R. C., Gonçalves, G. O., Paiva, E.C. (1995b). Mechanisms of physico-chemical interaction of mercury with river sediments from a gold mining region in Brazil. Proceedings of X Conference on Heavy Metals and The Environment. Hamburg.

    Google Scholar 

  • Melamed, R., Villas Bôas, R. C., Gonçalves, G. O., Paiva, E.C. (1996a). Mechanisms of physico-chemical interaction of mercury with river sediments from a gold mining region in Brazil: Relative mobility of mercury species. Journal of Geochemical Exploration. In press.

    Google Scholar 

  • Miller, D. M., M. E. Sumner, and W. P. Miller. (1989). A comparison of batch-and flow-generated anion adsorption isotherms. Soil Sci. Soc. Am. J., 53:373–380.

    Google Scholar 

  • Munthe, J. and McElroy, W.J., (1992). Some aqueous reactions of potential importance in the atmospheric chemistry of mercury. Atmospheric Environ., 26A:553–557.

    Google Scholar 

  • Nishimura, T, Tozawa, K. 1981. Bulletin of Research Institute of Mineral Dressing and Metallurgy, Tohuky University, Sendai, Japan 34, p19

    Google Scholar 

  • Nkedi-Kizza, P., J.W. Biggar, H.M. Selim, M.T. Van Genuchten, P.J. Wierenga, J.M. Davidson, and D.R. Nielsen (1984). On the equivalence of two conceptual models for describing ion exchange during transport through an aggregated oxisol. Water Resour. Res. 20:1123–1130.

    Google Scholar 

  • Nkedi-Kizza, P., P. S. C. Rao, R. E. Jessup, and J.M. Davidson. (1982). Ion exchange and diffusive mass transfer during miscible displacement through an aggregated oxisol. Soil Sci. Soc. Am. J., 46:471–476.

    Google Scholar 

  • Onken, A.B., C.W. Wendt, R.S. Hargrove, and O.C. Wilke (1977). Relative movement of bromide and nitrate in soils under three irrigation systems. Soil Sci. Soc. Am. J., 41:50–52.

    Google Scholar 

  • Padberg, S. and Stoeppler, M. (1991). Studies of transport and turnover of mercury and methylmercury. In: E. Merian (Editor), Proceedings of Workshop on Toxic Metal Compounds, Interrelation Between Chemistry and Biology, Les Diablerets, March 4–8.

    Google Scholar 

  • Parks, G. A., and P. L. de Bruyn. 1962. The zero point of charge of oxides. J. Phys. Chem. vol. 66:967–973.

    Google Scholar 

  • Rajan, S.S.S. (1976). Changes in net surface charge of hydrous alumina with phosphate adsorption. Nature, 262:45–46.

    Google Scholar 

  • Robins, R. G., Tozawa, K. (1982). Arsenic removal from gold processing waste waters: The potential ineffectiveness of lime. CIM Bull., 75, p 171.

    Google Scholar 

  • Roy, W.R., J.J. Hasset, and R.A. Griffin. (1986). Competitive coefficients for the adsorption of arsenate, molybdate and phosphate mixtures by soils. Soil Sci. Soc. Am. J., 50:1176–1182.

    Google Scholar 

  • Smith, S. J. (1972). Relative rate of chloride movement in leaching of surface soils. Soil Sci., 114:259–263.

    Google Scholar 

  • Smith, S. J., and R. J. Davis. (1974). Relative movement of bromide and nitrate through soils. J. Environ. Quality, 3:152–155.

    Google Scholar 

  • Sposito, G. (1984). The surface chemistry of soils. Oxford Univ. Press, New York.

    Google Scholar 

  • Stern, O. (1924). Zur Theorie der Elektrolytischen Doppelschicht. Z. Electrochem., 30:508–516.

    Google Scholar 

  • Thayer, J. S. (1989). Methylation: its role in the environmental mobility of heavy elements. Applied Organometallic Chemistry, 3:123–128.

    Google Scholar 

  • Thomas, G. W., and A. R. Swoboda. (1970). Anion exclusion effects on chloride movement in soils. Soil Sci., 110:163–166.

    Google Scholar 

  • Van Genuchten, Mh.T., and P.J. Wierenga (1976). Mass transfer studies in sorbing porous media: I. Analytical solutions. Soil Sci. Soc. Am. J., 40:473–480.

    Google Scholar 

  • Van Riemsdijk, W. H., and J. Lyklema (1980). Reaction of phosphate with gibbsite (Al(OH)3) beyond the adsorption maximum. J. Colloid and Interface Sci., 76:55–66.

    Google Scholar 

  • Van Riemsdijk, W. H., L. J. M. Boumans, and F. A. M. de Haan (1984). Phosphate sorption by soils: I. A model for phosphate reaction with metal oxides in soil. Soil Sci. Soc. Am. J., 48:537–541.

    Google Scholar 

  • Veiga, M. M. (1994). A Heuristic System for Environmental Risk Assessment of Mercury from Gold Mining Operations. Ph. D. thesis. The University of British Columbia. Canada, pp. 196.

    Google Scholar 

  • Verta, M., Rekolainen, S. and Kinnunen, K. (1986). Causes of increased fish mercury levels in Finnish reservoirs. In: Publications of Water Research Institute, Vesihallitus-National Board of Waters, no.65, Helsinki, Finland, pp. 44–71.

    Google Scholar 

  • Wagenet, R. J. (1983). Principles of salt movement in soils. p. 123–140. In D.W. Nelson et al. (eds.) Chemical Mobility and Reactivity in Soil Systems. Soil Sci. Soc. Am., Special Publication no. 11, Madison, WI.

    Google Scholar 

  • Willet, I. R., C. J. Chartres, and T. T. Nguyen (1988). Migration of phosphate into aggregated particles of ferrihydrite. J. Soil Sci., 39:275–282.

    Google Scholar 

  • Wood, J. M., Cheh, A., Dizikes, L. J., Ridley, W. P., Rakow, S., and Lakowicz, J. R. (1978). Mechanisms for the biomethylation of metals and metalloids. Federation Proc., 37:16–21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Julio C. Wasserman Emmanuel V. Silva-Filho Roberto Villas-Boas

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this chapter

Cite this chapter

Melamed, R. (1998). Speciation, reactivity and mobility of toxic elements in soil systems. In: Wasserman, J.C., Silva-Filho, E.V., Villas-Boas, R. (eds) Environmental Geochemistry in the Tropics. Lecture Notes in Earth Sciences, vol 72. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0010904

Download citation

  • DOI: https://doi.org/10.1007/BFb0010904

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63730-1

  • Online ISBN: 978-3-540-69638-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics