Skip to main content

Exploring Challenges and Opportunities for the Early Detection of Multiple Sclerosis Using Deep Learning

  • Chapter
  • First Online:
Artificial Intelligence and Autoimmune Diseases

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1133))

  • 216 Accesses

Abstract

MS stands as a persistent autoimmune condition impacting the central nervous system, leading to inflammation and the loss of myelin. Early and accurate diagnosis of MS is crucial for initiating timely medication and refining patient results. Deep learning, a branch of artificial intelligence, has displayed significant promise across a range of medical uses, encompassing the identification and prognosis of MS. This research aims to delve into the difficulties and prospects surrounding the application of deep learning methods to promptly detect MS. The study delves into the existing scenario of MS diagnosis and the confines of conventional approaches. It delves into the capacity of deep learning algorithms, specifically convolutional neural networks (CNNs), in scrutinizing medical imagery like magnetic resonance imaging (MRI) to pinpoint distinctive MS-related structures and characteristics that might signal the initial stages of the disease. The challenges encountered in leveraging deep learning for MS diagnosis are discussed, including the need for large annotated datasets, the interpretability of deep learning models, and the synthesis of multimodal data sources. The study also addresses concerns related to the generalizability and robustness of deep learning models when applied to diverse patient populations and imaging protocols. Furthermore, the study highlights the opportunities and advancements in deep learning approaches for MS detection, such as transfer learning, data augmentation, and ensemble methods. Additionally, this study discusses the potential clinical implications of deep learning-based MS diagnosis, including the potential for improved early intervention, personalized treatment plans, and monitoring disease progression. Overall, this research contributes to a comprehensive understanding of the challenges and opportunities in utilizing deep learning for the early detection of MS. The results of this study could open doors to creating better diagnostic tools that are both precise and effective, resulting in enhanced patient outcomes and progress in the field of diagnosing and treating multiple sclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Klawiter EC (2013) Current and new directions in MRI in multiple sclerosis. Continuum (Minneap Minn). 2013 Aug; 19(4 Multiple Sclerosis):1058-73. https://doi.org/10.1212/01.CON.0000433283.00221.37. PMID: 23917101; PMCID: PMC4234130

  2. Trip SA, Miller DH (2005) Imaging in multiple sclerosis. J Neurol, Neurosurg Psychiatry 76:iii11–iii18

    Google Scholar 

  3. Filippi M, Others (2019) Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain 142(7):1858–1875 (2019). https://doi.org/10.1093/brain/awz144

  4. Siger M (2022) Magnetic resonance imaging in primary progressive multiple sclerosis patients. Clin Neuroradiol 32:625–641. https://doi.org/10.1007/s00062-022-01144-3

  5. Moazami F, Lefevre-Utile A, Papaloukas C, Soumelis V (2021) Machine learning approaches in study of multiple sclerosis disease through magnetic resonance images. Front Immunol 12:700582. https://doi.org/10.3389/fimmu.2021.700582. PMID: 34456913; PMCID: PMC8385534

  6. Forghani R, Savadjiev P, Chatterjee A, Muthukrishnan N, Reinhold C, Forghani B (2019) Radiomics and artificial intelligence for biomarker and prediction model development in oncology. Comput Struct Biotechnol J 17:995–1008. https://doi.org/10.1016/j.csbj.2019.07.001. PMID: 31388413; PMCID: PMC6667772

  7. Ahmed Z, Mohamed K, Zeeshan S, Dong X (2020) Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database (Oxford) 2020:baaa010. https://doi.org/10.1093/database/baaa010. PMID: 32185396; PMCID: PMC7078068

  8. Mohammed Aarif KO, Mohamed Yousuff C, Mohammed Hashim BA, Mohamed Hashim C, Sivakumar P (2022) Smart bin: waste segregation system using deep learning-Internet of Things for sustainable smart cities. Concurrency Comput: Pract Exper 34(28):e7378

    Article  Google Scholar 

  9. Mohamed Aarif KO, Sivakumar P, Mohamed Yousuff C, Mohammed Hashim BA (2021) Deep MammoNet: early diagnosis of breast cancer using multi-layer hierarchical features of deep transfer learned convolutional neural network. Advanced machine learning approaches in cancer prognosis: challenges and applications. Springer International Publishing, Cham, pp 317–339

    Chapter  Google Scholar 

  10. Eshaghi A, Young AL, Wijeratne PA, Prados F, Arnold DL, Narayanan S, Ciccarelli O (2021) Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data. Nature Commun 12(1):2078

    Article  Google Scholar 

  11. Narayana PA, Coronado I, Sujit SJ, Wolinsky JS, Lublin FD, Gabr RE (2020) Deep learning for predicting enhancing lesions in multiple sclerosis from noncontrast MRI. Radiology 294:398–404. https://doi.org/10.1148/radiol.2019191061

  12. Gros C, De Leener B, Badji A, Maranzano J, Eden D, Dupont SM, Talbott J, Zhuoquiong R, Liu Y, Granberg T, Ouellette R Charley A, Gros C, De Leener B, Badji A, Maranzano J, Eden D, Dupont SM, Talbott J, Zhuoquiong R, Liu Y, Granberg T, Ouellette R, Tachibana Y, Hori M, Kamiya K, Chougar L, Stawiarz L, Hillert J, Bannier E, Kerbrat A, Julien GE (2019) Cohen-Adad utomatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. NeuroImage 184:901–915. ISSN 1053-8119. https://doi.org/10.1016/j.neuroimage.2018.09.081

  13. Montolío A, Martín-Gallego A, Cegoñino J, Orduna E, Vilades E, Garcia-Martin E, Palomar APD. Machine learning in diagnosis and disability prediction of multiple sclerosis using optical coherence tomography. Comput Biol Med 133:104416. https://doi.org/10.1016/j.compbiomed.2021.104416. Epub 2021 Apr 26. PMID: 33946022

  14. Casalino G, Castellano G, Consiglio A et al (2021) MicroRNA expression classification for pediatric multiple sclerosis identification. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-021-03091-2

  15. Schwab P, Karlen W (2020) A deep learning approach to diagnosing multiple sclerosis from smartphone data. IEEE J Biomed Health Inform 25:1284–1291

    Article  Google Scholar 

  16. La Rosa F et al (2018) Shallow vs deep learning architectures for white matter lesion segmentation in the early stages of multiple sclerosis. BrainLes@MICCAI (2018)

    Google Scholar 

  17. Eitel F, Soehler E, Bellmann-Strobl J, Brandt AU, Ruprecht K, Giess RM, Kuchling J, Asseyer S, Weygandt M, Haynes JD, Scheel M, Paul F, Ritter K (2019) Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation. NeuroImage: Clin 24:102003. ISSN 2213-1582. https://doi.org/10.1016/j.nicl.2019.102003

  18. Krishnan AP, Song Z, Clayton D et al (2023) Multi-arm U-Net with dense input and skip connectivity for T2 lesion segmentation in clinical trials of multiple sclerosis. Sci Rep 13:4102. https://doi.org/10.1038/s41598-023-31207-5

  19. Commowick O, Combès B, Cervenansky F, Dojat M (2023) Editorial: Automatic methods for multiple sclerosis new lesions detection and segmentation. Front Neurosci 17:1176625. https://doi.org/10.3389/fnins.2023.1176625

    Article  Google Scholar 

  20. Sepahvand NM, Arnold DL, Arbel T (2020) CNN detection of new and enlarging multiple sclerosis lesions from longitudinal Mri using subtraction images. In: Proceedings of the international symposium on biomedical imaging, Iowa City, IA, USA, 4 April 2020

    Google Scholar 

  21. Yılmaz Acar Y, Ba̧sçiftçi F, Ekmekci AH, (2022) A convolutional neural network model for identifying multiple sclerosis on brain FLAIR MRI. Sustain Comput Inform Syst 35:100706

    Google Scholar 

  22. La Rosa F, Beck ES, Maranzano J, Todea RA, van Gelderen P, de Zwart JA, Luciano NJ, Duyn JH, Thiran JP, Granziera C et al (2022) Multiple sclerosis cortical lesion detection with deep learning at ultra-high-field MRI. NMR Biomed 35:e4730

    Article  Google Scholar 

  23. Shmueli OZ, Solomon C, Ben-Eliezer N, Greenspan H (2022) Deep learning based multiple sclerosis lesion detection utilizing synthetic data generation and soft attention mechanism. In: Proceedings of the medical imaging 2022: computer-aided diagnosis, San Diego, CA, USA, 20 February–28 March 2022; vol. 12033, p 120330R

    Google Scholar 

  24. López-Dorado A, Ortiz M, Satue M, Rodrigo MJ, Barea R, Sánchez-Morla EM, Cavaliere C, Rodríguez-Ascariz JM, Orduna-Hospital E, Boquete L et al (2022) Early diagnosis of multiple sclerosis using swept-source optical coherence tomography and convolutional neural networks trained with data augmentation. Sensors 22:167

    Article  Google Scholar 

  25. Aslani S, Murino V, Dayan M, Tam R, Sona D, Hamarneh G (2020) Scanner invariant multiple sclerosis lesion segmentation from MRI. In: 2020 IEEE 17th international symposium on biomedical imaging (ISBI). IEEE, pp 781–785

    Google Scholar 

  26. Afzal HM, Luo S, Ramadan S, Lechner-Scott J, Amin MR, Li J, Afzal MK (2021) Automatic and robust segmentation of multiple sclerosis lesions with convolutional neural networks. CMC Comput Mater Contin 66(1):977–991

    Google Scholar 

  27. McKinley R, Wepfer R, Aschwanden F, Grunder L, Muri R, Rummel C, Wiest R (2021) Simultaneous lesion and brain segmentation in multiple sclerosis using deep neural networks. Sci Rep 11(1):1–11

    Article  Google Scholar 

  28. Kang G, Hou B, Ma Y, Labeau F, Su Z (2020) Acu-Net: a 3D attention context U-net for multiple sclerosis lesion segmentation. In ICASSP 2020-2020 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 1384–1388

    Google Scholar 

  29. Gabr RE, Coronado I, Robinson M, Sujit SJ, Datta S, Sun X, Narayana PA (2020) Brain and lesion segmentation in multiple sclerosis using fully convolutional neural networks: a large-scale study. Multiple Scleros J 26(10):1217–1226

    Article  Google Scholar 

  30. Yildirim MS, Dandil E (2021) DeepMSWeb: a web-based decision support system via deep learning for automatic detection of MS lesions. In: 2nd international informatics and software engineering conference (IISEC). Ankara, Turkey 2021, pp 1–6. https://doi.org/10.1109/IISEC54230.2021.9672360

  31. Yıldırım MS, Dandıl E (2021) Automated multiple sclerosis lesion segmentation on MR images via mask R-CNN. In: 5th international symposium on multidisciplinary studies and innovative technologies (ISMSIT). Ankara, Turkey 2021, pp 570–577. https://doi.org/10.1109/ISMSIT52890.2021.9604593

  32. Creagh AP, Dondelinger F, Lipsmeier F, Lindemann M, De Vos M (2022) Longitudinal trend monitoring of multiple sclerosis ambulation using smartphones. IEEE Open J Engin Med Biol 3:202–210. https://doi.org/10.1109/OJEMB.2022.3221306

    Article  Google Scholar 

  33. Salem M et al (2019) Multiple sclerosis lesion synthesis in MRI using an encoder-decoder U-NET. IEEE Access 7:25171–25184. https://doi.org/10.1109/ACCESS.2019.2900198

    Article  Google Scholar 

  34. Hashemi SR, Mohseni Salehi SS, Erdogmus D, Prabhu SP, Warfield SK, Gholipour A (2019) Asymmetric loss functions and deep densely-connected networks for highly-imbalanced medical image segmentation: application to multiple sclerosis lesion detection. IEEE Access 7:1721–1735. https://doi.org/10.1109/ACCESS.2018.2886371

    Article  Google Scholar 

  35. Muslim AM (2022) Brain MRI dataset of multiple sclerosis with consensus manual lesion segmentation and patient meta information. Mendeley Data V1. https://doi.org/10.17632/8bctsm8jz7.1

  36. Dataset. https://www.medinfo.cs.ucy.ac.cy/old/doc/Publications/Datasets/MRIFreeDataset.zip

  37. Carass A et al (2017) Longitudinal multiple sclerosis lesion segmentation: resource and challenge. Neuroimage 148:77–102. https://doi.org/10.1016/j.neuroimage.2016.12.064

    Article  Google Scholar 

  38. Lesjak Ž, Galimzianova A, Koren A, Lukin M, Pernuš F, Likar B, Špiclin Ž (2018) A novel public MR image dataset of multiple sclerosis patients with lesion segmentations based on multi-rater consensus. Neuroinformatics 16(1):51–63. https://doi.org/10.1007/s12021-017-9348-7. PMID: 29103086

    Article  Google Scholar 

  39. Merzoug A, Benamrane N, Taleb-Ahmed A (2021) Lesions detection of multiple sclerosis in 3D brian MR images by using artificial immune systems and support vector machines. Int J Cogn Inform Nat Intell 15:97–110

    Article  Google Scholar 

  40. Ucml laboratory of imaging technologies 3d Mr image database of multiple sclerosis patients with white matter lesion segmentations. http://lit.fe.uni-lj.si/tools.php?lang=eng. (Accessed: 20 October 2020)

  41. Kwan RK-S, Evans AC, Pike GB (1996) An extensible MRI simulator for post-processing evaluation” visualization in biomedical computing (VBC’96). Lecture notes in computer science, vol 1131. Springer, pp 135–140

    Google Scholar 

  42. Kazancli E, Prchkovska V, Rodrigues P, Villoslada P, Igual L (2018) Multiple sclerosis lesion segmentation using improved convolutional neural networks. In: VISIGRAPP (4: VISAPP) (Portugal), pp 260–269. https://doi.org/10.5220/0006540902600269

  43. Lublin FD, Reingold SC (1996) Defining the clinical course of multiple sclerosis: results of an international survey. National multiple sclerosis society (USA) advisory committee on clinical trials of new agents in multiple sclerosis. Neurology 46(4):907–911. https://doi.org/10.1212/wnl.46.4.907

  44. Roca P, Attye A, Colas L, Tucholka A, Rubini P, Cackowski S, et al (2020) OFSEP investigators; steering committee; investigators; imaging group. Artificial intelligence to predict clinical disability in patients with multiple sclerosis using FLAIR MRI. Diagn Interv Imaging 101(12):795–802. https://doi.org/10.1016/j.diii.2020.05.009

  45. Zhao WJ, Fu LR, Huang ZM, Zhu JQ, Ma BY (2019) Effectiveness evaluation of computer-aided diagnosis system for the diagnosis of thyroid nodules on ultrasound: A systematic review and meta-analysis. Medicine 98:e16379

    Article  Google Scholar 

  46. Zhan A et al (2018) Using smartphones and machine learning to quantify Parkinson disease severity: the mobile Parkinson disease score. JAMA Neurol 75:876–880

    Article  Google Scholar 

  47. Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A (eds) Medical image computing and computer assisted intervention - MICCAI 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-24574-428

  48. Ziemssen T, Akgün K, Brück W (2019) Molecular biomarkers in multiple sclerosis. J Neuroinflammat 16:272. https://doi.org/10.1186/s12974-019-1674-2

  49. Shanmuganathan M, Almutairi S, Aborokbah MM, Ganesan S, Ramachandran V (2020) Review of advanced computational approaches on multiple sclerosis segmentation and classification. IET Signal Process. 14:333–341. https://doi.org/10.1049/iet-spr.2019.0543

    Article  Google Scholar 

  50. Danelakis A, Theoharis T, Verganelakis DA (2018) Survey of automated multiple sclerosis lesion segmentation techniques on magnetic resonance imaging. Comput Med Imaging Graph 70:83–100. https://doi.org/10.1016/j.compmedimag.2018.10.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. O. Mohammed Aarif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohammed Aarif, K.O., Afroj Alam, Pakruddin, Riyazulla Rahman, J. (2024). Exploring Challenges and Opportunities for the Early Detection of Multiple Sclerosis Using Deep Learning. In: Raza, K., Singh, S. (eds) Artificial Intelligence and Autoimmune Diseases. Studies in Computational Intelligence, vol 1133. Springer, Singapore. https://doi.org/10.1007/978-981-99-9029-0_8

Download citation

Publish with us

Policies and ethics