Skip to main content

Simple and Innovative Methods to Estimate Gross Primary Production and Transpiration of Crops: A Review

  • Chapter
  • First Online:
Digital Ecosystem for Innovation in Agriculture

Part of the book series: Studies in Big Data ((SBD,volume 121))

Abstract

Sustainable agricultural production to support food security is one of the main targets of the 2030 agenda for global sustainable development goals (SDGs). New technology advancements and sources of information play a critical role in supporting agriculture to achieve the SDGs goals and increase production capabilities to meet rising food demands. Gross primary production (GPP) and transpiration (T) of crops are the largest carbon and water fluxes in agroecosystems. GPP data products are used to estimate crop yield, an important metric for agricultural resiliency and food security. Over land surfaces, T is the largest component of evapotranspiration and represents more than 60% of the precipitated water returned to the atmosphere. T is used to represent water use and improve irrigation in croplands, thereby helping to reduce production costs and support sustainable crop production. In this chapter, we review the state-of-the-science approaches for estimating GPP and T, including in situ and remote sensing methods, while focusing on the biophysical foundation behind the major available techniques. Furthermore, given the linkage between GPP and T through the behavior of stomates, it is possible to simplify the calculation of both variables by estimating common biophysical parameters (i.e., minimum stomatal conductance) that influence water loss and vegetation carbon uptake. We highlight innovative approaches that enhance the calculation of both variables based on this relationship and review the extent and limitations of the algorithms used in some of the most popular satellite products like Moderate Resolution Imaging Spectroradiometer (MODIS) global evapotranspiration product (MOD16) and EcoStress. Furthermore, this chapter explores and describes the potential for using solar-induced fluorescence (SIF) data to calculate agricultural GPP and T. Finally, given the importance of certain variables in agricultural and forest meteorology, this chapter also includes a section highlighting the main conversion factors useful in calculating energy, carbon, and water fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/AmeriFlux/ONEFlux/.

Abbreviations

APAR:

Absorbed photosynthetically active radiation

APARchl:

Absorbed photosynthetically active radiation by the chlorophyll

CO2:

Carbon dioxide

CP:

Change point detection

c p :

Specific heat

E:

Evaporation

Ebs:

Bare soil evaporation

EC:

Eddy covariance

ECOSTRESS:

The ecosystem spaceborne Thermal radiometer experiment on space station

ECT:

Eddy covariance tower

ER:

Ecosystem respiration

ET:

Evapotranspiration

EVI:

Enhanced vegetation index

Ewc:

Evaporation from wet canopy

fPAR:

Fraction of photosynthetically active radiation

FVS:

Flux variance similarity

Fwet:

Water cover fraction

G:

Ground soil heat flux

GMAO:

Global modeling and assimilation office

GOSAT:

Greenhouse gases observing satellite

GPP:

Gross primary production

H:

Sensible heat flux

HSR:

High spatial resolution

IR:

Infrared

LAI:

Leaf area index

LE:

Latente heat flux

LST:

Land surface temperature

LSWI:

Land surface water index

LUE(εg):

Light use efficiency

LUE0(ε0):

Maximum light use efficiency

MIP:

Model intercomparison project

MODIS:

Moderate resolution imaging spectroradiometer

MP:

Moving-point-transition

MSR:

Moderate spatial resolution

NBP:

Net ecosystem carbon balance

NDVI:

Normalized differentiate vegetation index

NEE:

Net ecosystem exchange

NPP:

Net primary production

NPV:

Non-photosynthetically active vegetation

OCO-2:

Orbiting carbon observatory-2

P-M:

Penman–Monteith

PAR:

Photosynthetically active radiation

PAV:

Photosynthetically active vegetation (chloroplast)

PPFD:

Photosynthetic photon flux density

QC:

Quality controls

r a :

Aerodynamic resistance

r c :

Canopy stomatal resistance

REF:

Reference

RH:

Relative humidity

Rn:

Net radiation

SE:

Standard error

SEB:

Surface energy balance

SIF:

Solar-induced chlorophyll fluorescence

SMAP:

Soil moisture active passive (SMAP)

SVAT:

Surface-vegetation-atmosphere transfer

SW:

Total incoming shortwave solar radiation

SWIR:

Shortwave infrared

T:

Transpiration

TEM:

Terrestrial ecosystem model

TIR:

Thermal infrared

Topt:

Optimal air temperature for photosynthesis

u*:

Friction velocity

VIs:

Vegetation indices

VPD:

Vapor pressure deficit

VPM:

Vegetation photosynthesis model

VTM:

Vegetation transpiration model

WUE:

Water use efficiency

γ :

Psychrometric constant

Δ :

Vapor pressure–air temperature curve

ρ :

Air density

References

  • Abtew, W., & Melesse, A. (2012). Evaporation and evapotranspiration: Measurements and estimations. Springer Science & Business Media.

    Google Scholar 

  • Alfieri, J. G., Xiao, X., Niyogi, D., Pielke, R. A., Chen, F., & LeMone, M. A. (2009). Satellite-based modeling of transpiration from the grasslands in the Southern Great Plains, USA. Global and Planetary Change, 67(1), 78–86. https://doi.org/10.1016/j.gloplacha.2008.12.003

    Article  Google Scholar 

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao Rome, 300(9), D05109.

    Google Scholar 

  • Amthor, J. S. (1995). Terrestrial higher-plant response to increasing atmospheric [CO2] in relation to the global carbon cycle. Global Change Biology, 1(4), 243–274.

    Article  Google Scholar 

  • Anav, A., et al. (2015). Spatiotemporal patterns of terrestrial gross primary production: A review. Reviews of Geophysics, 53(3), 785–818.

    Article  Google Scholar 

  • Anderson, M. C. (2021). Level-3 evapotranspiration (ET_ALEXI) algorithm theoretical basis document, (pp. 26).

    Google Scholar 

  • Atzberger, C. (2013). Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sensing, 5(2), Art. no. 2. https://doi.org/10.3390/rs5020949.

  • Aubinet, M., Vesala, T., & Papale, D. (2012). Eddy covariance: A practical guide to measurement and data analysis. Springer Science & Business Media.

    Google Scholar 

  • Bakker, D. C., et al. (2016). A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth System Science Data, 8(2), 383–413.

    Article  Google Scholar 

  • Baldocchi, D. D. (2003). Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Global Change Biology, 9(4), 479–492.

    Article  Google Scholar 

  • Beer, C., et al. (2010). Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science, 329(5993), 834–838.

    Article  Google Scholar 

  • Blackard, J. A., et al. (2008). Mapping US forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sensing of Environment, 112(4), 1658–1677.

    Article  Google Scholar 

  • Blum, A. (2009). Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Research, 112(2–3), 119–123.

    Article  Google Scholar 

  • Blyth, E., & Harding, R. J. (2011). Methods to separate observed global evapotranspiration into the interception, transpiration and soil surface evaporation components. Hydrological Processes, 25(26), 4063–4068.

    Article  Google Scholar 

  • Bondeau, A., et al. (2007). Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biology, 13(3), 679–706.

    Article  Google Scholar 

  • Boulet, G., Chehbouni, A., Braud, I., Vauclin, M., Haverkamp, R., & Zammit, C. (2000). A simple water and energy balance model designed for regionalization and remote sensing data utilization. Agricultural and Forest Meteorology, 105(1–3), 117–132.

    Article  Google Scholar 

  • Calvet, J.-C., et al. (1998). An interactive vegetation SVAT model tested against data from six contrasting sites. Agricultural and Forest Meteorology, 92(2), 73–95.

    Article  Google Scholar 

  • Campbell, G. S., & Norman, J. M. (1998). Introduction to environmental biophysics (2nd ed.). Springer.

    Book  Google Scholar 

  • Celis, J. A. et al. (2021). From standard weather stations to virtual micro-meteorological towers in ungauged sites: Modeling tool for surface energy fluxes, evapotranspiration, soil temperature, and soil moisture estimations. Remote Sensing, 13(7), Art. no. 7. https://doi.org/10.3390/rs13071271

  • Chang, Q., Xiao, X., Doughty, R., Wu, X., Jiao, W., & Qin, Y. (2021). Assessing variability of optimum air temperature for photosynthesis across site-years, sites and biomes and their effects on photosynthesis estimation. Agricultural and Forest Meteorology, 298–299, 108277. https://doi.org/10.1016/j.agrformet.2020.108277

  • Chen, J. M., Liu, J., Cihlar, J., & Goulden, M. L. (1999). Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecological Modelling, 124(2–3), 99–119.

    Article  Google Scholar 

  • Chen, D.-X., Coughenour, M. B. (2004). Photosynthesis, transpiration, and primary productivity: Scaling up from leaves to canopies and regions using process models and remotely sensed data. Global Biogeochemical Cycles, 18(4). https://doi.org/10.1029/2002GB001979

  • Cleugh, H. A., Leuning, R., Mu, Q., & Running, S. W. (2007). Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sensing of Environment, 106(3), 285–304.

    Article  Google Scholar 

  • Cox, P. M., Huntingford, C., & Harding, R. J. (1998). A canopy conductance and photosynthesis model for use in a GCM land surface scheme. Journal of Hydrology, 212–213, 79–94. https://doi.org/10.1016/S0022-1694(98)00203-0

    Article  Google Scholar 

  • Dash, J., & Curran, P. J. (2004). The MERIS terrestrial chlorophyll index.

    Google Scholar 

  • Deardorff, J. W. (1978). Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. Journal of Geophysical Research Oceans, 83(C4), 1889–1903.

    Article  Google Scholar 

  • Dorman, J. L., & Sellers, P. J. (1989). A global climatology of Albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the simple biosphere model (SiB). Journal of Applied Meteorology, 28, 833–855. https://doi.org/10.1175/1520-0450(1989)028%3c0833:AGCOAR%3e2.0.CO;2

    Article  Google Scholar 

  • Doughty, R., et al. (2018). Responses of gross primary production of grasslands and croplands under drought, pluvial, and irrigation conditions during 2010–2016, Oklahoma, USA. Agricultural Water Management, 204, 47–59. https://doi.org/10.1016/j.agwat.2018.04.001

    Article  Google Scholar 

  • Eltahir, E. A., & Bras, R. L. (1996). Precipitation recycling. Reviews of Geophysics, 34(3), 367–378.

    Article  Google Scholar 

  • Farquhar, G. D., von von Caemmerer, S., & Berry, J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1), 78–90.

    Google Scholar 

  • Farquhar, G. D., & Sharkey, T. D. (1982). Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 33(1), 317–345.

    Article  Google Scholar 

  • Fisher, J. B., Tu, K. P., & Baldocchi, D. D. (2008). Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sensing of Environment, 112(3), 901–919.

    Article  Google Scholar 

  • Foken, T. (2008). The energy balance closure problem: An overview. Ecological Applications, 18(6), 1351–1367.

    Article  Google Scholar 

  • Foley, J. A., et al. (1996). An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles, 10(4), 603–628.

    Article  Google Scholar 

  • Glenn, E. P., Huete, A. R., Nagler, P. L., Hirschboeck, K. K., & Brown, P. (2007). Integrating remote sensing and ground methods to estimate evapotranspiration. Critical Reviews in Plant Sciences, 26(3), 139–168.

    Article  Google Scholar 

  • Glenn, E. P., Huete, A. R., Nagler, P. L., & Nelson, S. G. (2008). Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: What vegetation indices can and cannot tell us about the landscape. Sensors, 8(4), 2136–2160.

    Article  Google Scholar 

  • Gowda, P. H., Chavez, J. L., Colaizzi, P. D., Evett, S. R., Howell, T. A., & Tolk, J. A. (2008). ET mapping for agricultural water management: Present status and challenges. Irrigation Science, 26(3), 223–237.

    Article  Google Scholar 

  • Guanter, L., et al. (2014). Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proceedings of the National Academy of Sciences, 111(14), E1327–E1333. https://doi.org/10.1073/pnas.1320008111

    Article  Google Scholar 

  • Harwood, K. G., Gillon, J. S., Roberts, A., & Griffiths, H. (1999). Determinants of isotopic coupling of CO2 and water vapour within a Quercus petraea forest canopy. Oecologia, 119(1), 109–119.

    Article  Google Scholar 

  • Hazarika, M. K., Yasuoka, Y., Ito, A., & Dye, D. (2005). Estimation of net primary productivity by integrating remote sensing data with an ecosystem model. Remote Sensing of Environment, 94(3), 298–310.

    Article  Google Scholar 

  • He, M. et al. (2018). Regional crop gross primary productivity and yield estimation using fused landsat-MODIS data. Remote Sensing, 10(3), Art. no. 3. https://doi.org/10.3390/rs10030372

  • Huang, M., et al. (2019a). Air temperature optima of vegetation productivity across global biomes. Nature Ecology and Evolution, 3(5), 772–779.

    Article  Google Scholar 

  • Huang, X., Xiao, J., & Ma, M. (2019b). Evaluating the performance of satellite-derived vegetation indices for estimating gross primary productivity using FLUXNET observations across the globe. Remote Sensing, 11(15), 1823.

    Article  Google Scholar 

  • Hulley, G., Hook, S., Fisher, J.,& Lee, C. (2017). Ecostress, A NASA Earth-Ventures Instrument for studying links between the water cycle and plant health over the diurnal cycle. In 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2017, (pp. 5494–5496).

    Google Scholar 

  • Huntzinger, D. N., et al. (2012). North American carbon program (NACP) regional interim synthesis: Terrestrial biospheric model intercomparison. Ecological Modelling, 232, 144–157.

    Article  Google Scholar 

  • Imhoff, M. L. (1995). Radar backscatter and biomass saturation: Ramifications for global biomass inventory. IEEE Transactions on Geoscience and Remote Sensing, 33(2), 511–518.

    Article  Google Scholar 

  • Irmak, S., et al. (2008). On the scaling up leaf stomatal resistance to canopy resistance using photosynthetic photon flux density. Agricultural and Forest Meteorology, 148(6–7), 1034–1044.

    Article  Google Scholar 

  • Ivanov, V. Y., Vivoni, E. R., Bras, R. L., & Entekhabi, D. (2004). Catchment hydrologic response with a fully distributed triangulated irregular network model. Water Resources Research, 40(11). https://doi.org/10.1029/2004WR003218

  • Jarvis, P. G., & McNaughton, K. G. (1986). Stomatal control of transpiration: Scaling up from leaf to region. Advances in Ecological Research, 15, 1–49.

    Article  Google Scholar 

  • Jocher, G., et al. (2017). Apparent winter CO2 uptake by a boreal forest due to decoupling. Agricultural and Forest Meteorology, 232, 23–34.

    Article  Google Scholar 

  • Jung, M., Reichstein, M., & Bondeau, A. (2009). Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6(10), 2001–2013.

    Article  Google Scholar 

  • Kattge, J., Knorr, W., Raddatz, T., & Wirth, C. (2009). Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Global Change Biology, 15, 976–991. https://doi.org/10.1111/j.1365-2486.2008.01744.x

    Article  Google Scholar 

  • Kondo, M., Ichii, K., Takagi, H., & Sasakawa, M. (2015). Comparison of the data-driven top-down and bottom-up global terrestrial CO2 exchanges: GOSAT CO2 inversion and empirical eddy flux upscaling. Journal of Geophysical Research Biogeosciences, 120(7), 1226–1245.

    Article  Google Scholar 

  • Kool, D., Agam, N., Lazarovitch, N., Heitman, J. L., Sauer, T. J., & Ben-Gal, A. (2014). A review of approaches for evapotranspiration partitioning. Agricultural and Forest Meteorology, 184, 56–70.

    Article  Google Scholar 

  • Kustas, W., & Anderson, M. (2009). Advances in thermal infrared remote sensing for land surface modeling. Agricultural and Forest Meteorology, 149(12), 2071–2081.

    Article  Google Scholar 

  • Lambers, H., Chapin III, F. S., & Pons, T. L. (2008). In Plant physiological ecology. Springer Science & Business Media.

    Google Scholar 

  • Le Quéré, C., et al. (2018). Global carbon budget 2017. Earth System Science Data, 10(1), 405–448.

    Article  Google Scholar 

  • Le Toan, T., Beaudoin, A., Riom, J., & Guyon, D. (1992). Relating forest biomass to SAR data. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 403–411.

    Article  Google Scholar 

  • Li, X., Xiao, J., & He, B. (2018). Chlorophyll fluorescence observed by OCO-2 is strongly related to gross primary productivity estimated from flux towers in temperate forests. Remote Sensing of Environment, 204, 659–671.

    Article  Google Scholar 

  • Liáng, L. L., Kirschbaum, M. U., Giltrap, D. L., Wall, A. M., & Campbell, D. I. (2020). Modelling the effects of pasture renewal on the carbon balance of grazed pastures. Science Total Environment, 715, 136917.

    Google Scholar 

  • Liu, Y., et al. (2018). Satellite-derived LAI products exhibit large discrepancies and can lead to substantial uncertainty in simulated carbon and water fluxes. Remote Sensing of Environment, 206, 174–188.

    Article  Google Scholar 

  • Loescher, H. W., Oberbauer, S. F., Gholz, H. L., & Clark, D. B. (2003). Environmental controls on net ecosystem-level carbon exchange and productivity in a Central American tropical wet forest. Global Change Biology, 9(3), 396–412. https://doi.org/10.1046/j.1365-2486.2003.00599.x

    Article  Google Scholar 

  • Loescher, H. W., Law, B. E., Mahrt, L., Hollinger, D. Y., Campbell, J., & Wofsy, S. C. (2006). Uncertainties in, and interpretation of, carbon flux estimates using the eddy covariance technique. Journal of Geophysical Research Atmospheres, 111(D21). https://doi.org/10.1029/2005JD006932

  • Longdoz, B., & Granier, A. (2012). Eddy covariance measurements over forests. In Eddy Covariance (pp. 309–318). Springer.

    Google Scholar 

  • Lu, X., et al. (2018). Potential of solar-induced chlorophyll fluorescence to estimate transpiration in a temperate forest. Agricultural and Forest Meteorology, 252, 75–87.

    Article  Google Scholar 

  • Lutz, F., et al. (2019). Simulating the effect of tillage practices with the global ecosystem model LPJmL (version 5.0-tillage). Geoscience Model Development, 12(6), 2419–2440.

    Article  Google Scholar 

  • Ma, J., Yan, X., Dong, W., & Chou, J. (2015). Gross primary production of global forest ecosystems has been overestimated. Science and Reports, 5(1), 1–9.

    Google Scholar 

  • Ma, J., Xiao, X., Zhang, Y., Doughty, R., Chen, B., & Zhao, B. (2018). Spatial-temporal consistency between gross primary productivity and solar-induced chlorophyll fluorescence of vegetation in China during 2007–2014. Science of the Total Environment, 639, 1241–1253. https://doi.org/10.1016/j.scitotenv.2018.05.245

    Article  Google Scholar 

  • Mahfouf, J.-F., et al. (1996). Analysis of transpiration results from the RICE and PILPS workshop. Global and Planetary Change, 13(1–4), 73–88.

    Article  Google Scholar 

  • Maksyutov, S., et al. (2021). Technical note: A high-resolution inverse modelling technique for estimating surface CO2 fluxes based on the NIES-TM–FLEXPART coupled transport model and its adjoint. Atmospheric Chemistry and Physics, 21(2), 1245–1266. https://doi.org/10.5194/acp-21-1245-2021

    Article  Google Scholar 

  • Matsui, T., Lakshmi, V., & Small, E. E. (2005). The effects of satellite-derived vegetation cover variability on simulated land–atmosphere interactions in the NAMS. Journal of Climate, 18(1), 21–40.

    Article  Google Scholar 

  • Mavi, H. S., & Tupper, G. J. (2004). In Agrometeorology: Principles and applications of climate studies in agriculture. CRC Press.

    Google Scholar 

  • Medlyn, B. E. (1998). Physiological basis of the light use efficiency model. Tree Physiology, 18(3), 167–176. https://doi.org/10.1093/treephys/18.3.167

    Article  Google Scholar 

  • Melton, J. R., & Arora, V. K. (2016). Competition between plant functional types in the Canadian terrestrial ecosystem model (CTEM) v. 2.0. Geoscientific Model Development, 9(1), 323.

    Google Scholar 

  • Mencuccini, M., Manzoni, S., & Christoffersen, B. (2019). Modelling water fluxes in plants: From tissues to biosphere. New Phytologist, 222(3), 1207–1222. https://doi.org/10.1111/nph.15681

    Article  Google Scholar 

  • Méndez-Barroso, L. A., et al. (2014). A modeling approach reveals differences in evapotranspiration and its partitioning in two semiarid ecosystems in Northwest Mexico. Water Resources Research, 50(4), 3229–3252.

    Article  Google Scholar 

  • Monteith, J. L. (1965). Evaporation and environment. Symposia of the Society for Experimental Biology, 19, 205–234.

    Google Scholar 

  • Monteith, J. L., & Szeicz, G. (1960). The carbon-dioxide flux over a field of sugar beet. Quarterly Journal Royal Meteorological Society, 86(368), 205–214. https://doi.org/10.1002/qj.49708636810

    Article  Google Scholar 

  • Montgomery, R. B. (1948). Vertical eddy flux of heat in the atmosphere. Journal of Atmospheric Science, 5(6), 265–274.

    Google Scholar 

  • Mu, Q., Heinsch, F. A., Zhao, M., & Running, S. W. (2007b). Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment, 111(4), 519–536.

    Article  Google Scholar 

  • Mu, Q., Zhao, M., & Running, S. W. (2011). Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment, 115(8), 1781–1800.

    Article  Google Scholar 

  • Mu, Q., Zhao, M., Heinsch, F. A., Liu, M., Tian, H., & Running, S. W. (2007a) Evaluating water stress controls on primary production in biogeochemical and remote sensing based models. Jounal of Geophysical Reseach Biogeosciences, 112(G1).

    Google Scholar 

  • Myneni et al. (1999) Algorithm Theoretical Basis Document (pp. 130).

    Google Scholar 

  • Nobel, P. S. (1999). In Physicochemical and environmental plant physiology. Academic Press.

    Google Scholar 

  • Obukhov, A. M. (1951). Charakteristiki mikrostruktury vetra v prizemnom sloje atmosfery (Characteristics of the micro-structure of the wind in the surface layer of the atmosphere). Izv SSSR Ser Geofiz, 3, 49–68.

    Google Scholar 

  • Pacheco-Labrador, J. et al. (2019). Multiple-constraint inversion of SCOPE. Evaluating the potential of GPP and SIF for the retrieval of plant functional traits. Remote Sensing Environment, 234, 111362. https://doi.org/10.1016/j.rse.2019.111362

  • Pastorello, G., et al. (2020). The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Science Data, 7(1), 1–27.

    Article  Google Scholar 

  • Penman, H. L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 193(1032), 120–145.

    Google Scholar 

  • Ponce-Campos, G. E., et al. (2013). Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature, 494(7437), 349–352.

    Article  Google Scholar 

  • Poyatos, R., Granda, V., Molowny-Horas, R., Mencuccini, M., Steppe, K., & Martínez-Vilalta, J. (2016). SAPFLUXNET: Towards a global database of sap flow measurements. Tree Physiology, 36(12), 1449–1455.

    Article  Google Scholar 

  • Prentice, I. C., Dong, N., Gleason, S. M., Maire, V., & Wright, I. J. (2014). Balancing the costs of carbon gain and water transport: Testing a new theoretical framework for plant functional ecology. Ecology Letters, 17(1), 82–91.

    Article  Google Scholar 

  • Rahman, A. F., Sims, D. A., Cordova, V. D., & El-Masri, B. Z. (2005). Potential of MODIS EVI and surface temperature for directly estimating per-pixel ecosystem C fluxes. Geophysical Research Letters, 32(19).

    Google Scholar 

  • Rayner, P. J., & O’Brien, D. M. (2001). The utility of remotely sensed CO2 concentration data in surface source inversions. Geophysical Research Letters, 28(1), 175–178.

    Article  Google Scholar 

  • Reichstein, M., et al. (2002). Ecosystem respiration in two Mediterranean evergreen Holm Oak forests: Drought effects and decomposition dynamics. Functional Ecology, 16(1), 27–39.

    Article  Google Scholar 

  • Reichstein, M., et al. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Global Change Biology, 11(9), 1424–1439.

    Article  Google Scholar 

  • Restrepo-Coupe, N., et al. (2016). MODIS vegetation products as proxies of photosynthetic potential along a gradient of meteorologically and biologically driven ecosystem productivity. Biogeosciences, 13(19), 5587–5608.

    Article  Google Scholar 

  • Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., & Hashimoto, H. (2004). A continuous satellite-derived measure of global terrestrial primary production. BioScience, 54(6), 547–560.

    Article  Google Scholar 

  • Saleska, S. R., et al. (2016). Dry-season greening of Amazon forests. Nature, 531(7594), E4–E5.

    Article  Google Scholar 

  • Scanlon, T. M., & Kustas, W. P. (2012). Partitioning evapotranspiration using an eddy covariance-based technique: Improved assessment of soil moisture and land–atmosphere exchange dynamics. Vadose Zone Journal, 11(3).

    Google Scholar 

  • Scanlon, T. M., & Kustas, W. P. (2010). Partitioning carbon dioxide and water vapor fluxes using correlation analysis. Agricultural and Forest Meteorology, 150(1), 89–99.

    Article  Google Scholar 

  • Schmid, H. P. (1994). Source areas for scalars and scalar fluxes. Bound.-Layer Meteorology, 67(3), 293–318

    Google Scholar 

  • Schulze, E.-D., Kelliher, F. M., Körner, C., Lloyd, J., & Leuning, R. (1994). Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise. Annual Review of Ecology and Systematics, 25(1), 629–662.

    Article  Google Scholar 

  • Schulze, E.-D., Leuning, R., & Kelliher, F. M. (1995). Environmental regulation of surface conductance for evaporation from vegetation. In Global change and terrestrial ecosystems in Monsoon Asia (pp. 79–87). Springer.

    Google Scholar 

  • Sellers, P. J., Berry, J. A., Collatz, G. J., Field, C. B., & Hall, F. G. (1992). Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sensing of Environment, 42(3), 187–216. https://doi.org/10.1016/0034-4257(92)90102-P

    Article  Google Scholar 

  • Sitch, S., et al. (2003). Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9(2), 161–185.

    Article  Google Scholar 

  • Song, Q., Zhang, G., & Zhu, X.-G. (2013). Optimal crop canopy architecture to maximise canopy photosynthetic CO2 uptake under elevated CO2–A theoretical study using a mechanistic model of canopy photosynthesis. Functional Plant Biology, 40(2), 108–124.

    Article  Google Scholar 

  • Song, Q., Wang, Y., Qu, M., Ort, D. R., & Zhu, X.-G. (2017). The impact of modifying photosystem antenna size on canopy photosynthetic efficiency—Development of a new canopy photosynthesis model scaling from metabolism to canopy level processes. Plant, Cell and Environment, 40(12), 2946–2957. https://doi.org/10.1111/pce.13041

    Article  Google Scholar 

  • Sperry, J. S., et al. (2017). Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. Plant, Cell and Environment, 40(6), 816–830.

    Article  Google Scholar 

  • Stanhill, G. (1986). Water use efficiency. In N. C. Brady (Ed.), Advances in agronomy (Vol. 39, pp. 53–85). Academic Press. https://doi.org/10.1016/S0065-2113(08)60465-4

  • Stewart, J. B., & Verma, S. B. (1992). Comparison of surface fluxes and conductances at two contrasting sites within the FIFE area. Journal of Geophysical Research Atmospheres, 97(D17), 18623–18628.

    Article  Google Scholar 

  • Stoy, P. C., et al. (2013). A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape scale heterogeneity. Agricultural and Forest Meteorology, 171, 137–152.

    Article  Google Scholar 

  • Stoy, P. C., et al. (2019). Reviews and syntheses: Turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities. Biogeosciences, 16(19), 3747–3775. https://doi.org/10.5194/bg-16-3747-2019

    Article  Google Scholar 

  • Swinbank, W. C. (1951). The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. Journal of Atmospheric Science, 8(3), 135–145.

    Google Scholar 

  • Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2015). Plant physiology and development. In Plant Physiology Development, edn 6. Accessed 04 Sep 2022. [Online]. Available: https://www.cabdirect.org/cabdirect/abstract/20173165866

  • Taiz, L., & Zeiger, E. (2002). Plant physiology (3rd ed.). Sinauer Associates.

    Google Scholar 

  • Thimijan, R. W., & Heins, R. D. (1983). Photometric, radiometric, and quantum light units of measure: A review of procedures for interconversion. HortScience, 18(6), 818–822.

    Article  Google Scholar 

  • Tucker, C. J., Slayback, D. A., Pinzon, J. E., Los, S. O., Myneni, R. B., & Taylor, M. G. (2001). Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. International Journal of Biometeorology, 45(4), 184–190.

    Article  Google Scholar 

  • van der Ent, R. J., Savenije, H. H. G., Schaefli, B., & Steele-Dunne, S. C. (2010). Origin and fate of atmospheric moisture over continents. Water Resources Research, 46(9). https://doi.org/10.1029/2010WR009127

  • Vivoni, E. R., et al. (2007a). Variation of hydrometeorological conditions along a topographic transect in Northwestern Mexico during the North American monsoon. Journal of Climate, 20(9), 1792–1809.

    Article  Google Scholar 

  • Vivoni, E. R., Entekhabi, D., Bras, R. L., & Ivanov, V. Y. (2007b). Controls on runoff generation and scale-dependence in a distributed hydrologic model.

    Google Scholar 

  • Vivoni, E. R. et al. (2008). Observed relation between evapotranspiration and soil moisture in the North American monsoon region. Geophysical Research Letters, 35(22). https://doi.org/10.1029/2008GL036001

  • Wagle, P., Raghav, P., Kumar, M., & Gunter, S. A. (2023). Influence of water use efficiency parameterizations on flux variance similarity-based partitioning of evapotranspiration. Agricultural and Forest Meteorology, 328, 109254. https://doi.org/10.1016/j.agrformet.2022.109254

  • Wei, S., Yi, C., Fang, W., & Hendrey, G. (2017a). A global study of GPP focusing on light-use efficiency in a random forest regression model. Ecosphere, 8(5), e01724.

    Article  Google Scholar 

  • Wei, Z., Yoshimura, K., Wang, L., Miralles, D. G., Jasechko, S., & Lee, X. (2017b). Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophysical Research Letters, 44(6), 2792–2801.

    Article  Google Scholar 

  • White, M. A., Thornton, P. E., Running, S. W., & Nemani, R. R. (2000). Parameterization and sensitivity analysis of the BIOME–BGC terrestrial ecosystem model: Net primary production controls. Earth Interactions, 4(3), 1–85.

    Article  Google Scholar 

  • Williams, D. G., et al. (2004). Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agricultural and Forest Meteorology, 125(3), 241–258. https://doi.org/10.1016/j.agrformet.2004.04.008

    Article  Google Scholar 

  • Wu, J., et al. (2016). Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests. Science, 351(6276), 972–976. https://doi.org/10.1126/science.aad5068

    Article  Google Scholar 

  • Wu, X., et al. (2018). Spatiotemporal consistency of four gross primary production products and solar-induced chlorophyll fluorescence in response to climate extremes across CONUS in 2012. Journal of Geophysical Research Biogeosciences, 123(10), 3140–3161.

    Article  Google Scholar 

  • Wu, X., Xiao, X., Yang, Z., Wang, J., Steiner, J., & Bajgain, R. (2020). Spatial-temporal dynamics of maize and soybean planted area, harvested area, gross primary production, and grain production in the Contiguous United States during 2008–2018. Agricultural Forest Meteorology, 108240.

    Google Scholar 

  • Xiao, X. (2006). Light absorption by leaf chlorophyll and maximum light use efficiency. IEEE Transactions on Geoscience and Remote Sensing, 44(7), 1933–1935.

    Article  Google Scholar 

  • Xiao, X., et al. (2004a). Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sensing of Environment, 89(4), 519–534.

    Article  Google Scholar 

  • Xiao, X., et al. (2004b). Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sensing of Environment, 91(2), 256–270.

    Article  Google Scholar 

  • Xiao, X., et al. (2005). Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sensing of Environment, 95(4), 480–492.

    Article  Google Scholar 

  • Xiao, J. et al. (2019). Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sensing Environment, 233, 111383. https://doi.org/10.1016/j.rse.2019.111383

  • Yan, H., et al. (2015). Improved global simulations of gross primary product based on a new definition of water stress factor and a separate treatment of C3 and C4 plants. Ecological Modelling, 297, 42–59.

    Article  Google Scholar 

  • Yepez, E. A., Williams, D. G., Scott, R. L., & Lin, G. (2003). Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor. Agricultural and Forest Meteorology, 119(1–2), 53–68.

    Article  Google Scholar 

  • Zhang, Y., et al. (2014). Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models. Global Change Biology, 20(12), 3727–3742.

    Article  Google Scholar 

  • Zhang, Y. et al. (2017). A global moderate resolution dataset of gross primary production of vegetation for 2000–2016. Science Data, 4, 170165.

    Google Scholar 

  • Zhao, M., & Running, S. W. (2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329(5994), 940–943. https://doi.org/10.1126/science.1192666

    Article  Google Scholar 

  • Zhao, M., Heinsch, F. A., Nemani, R. R., & Running, S. W. (2005). Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sensing of Environment, 95(2), 164–176. https://doi.org/10.1016/j.rse.2004.12.011

    Article  Google Scholar 

  • Zhou, Y. et al. (2019). Climate effects on tallgrass prairie responses to continuous and rotational grazing. Agronomy, 9(5), Art. no. 5. https://doi.org/10.3390/agronomy9050219

Download references

Acknowledgements

This literature review work was supported by research grants from NASA Geostationary Carbon Cycle Observatory mission (GeoCarb Contract #80LARC17C0001), NSF EPSCoR (IIA-1946093), and USDA NIFA (2020-67104-30935).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangming Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Celis, J., Xiao, X., Basara, J., Wagle, P., McCarthy, H. (2023). Simple and Innovative Methods to Estimate Gross Primary Production and Transpiration of Crops: A Review. In: Chaudhary, S., Biradar, C.M., Divakaran, S., Raval, M.S. (eds) Digital Ecosystem for Innovation in Agriculture. Studies in Big Data, vol 121. Springer, Singapore. https://doi.org/10.1007/978-981-99-0577-5_7

Download citation

Publish with us

Policies and ethics