Skip to main content

An Algorithmic Framework for Fusing Images from Satellites, Unmanned Aerial Vehicles (UAV), and Farm Internet of Things (IoT) Sensors

  • Chapter
  • First Online:
Digital Ecosystem for Innovation in Agriculture

Part of the book series: Studies in Big Data ((SBD,volume 121))

  • 256 Accesses

Abstract

Satellites provide time series data in the form of multispectral images depicting land surface characteristics spanning several km2, while unmanned aerial vehicles (UAVs) provide multispectral farm data with very high resolution spanning a few hundred square meters. In contrast, low-cost sensors and IoT sensors provide accurate spatial and time series data of land and soil characteristics spanning a few meters. However, in practice, each of these data sources has been separately used even though there is scope for optimizing farm resources and improving the quality of satellite and UAV data by exploiting their complementarity. In this chapter, we present an algorithmic framework that exploits the synergies among the three data sources to construct a high-dimensional farm map. We present an outline of how this framework can help in the construction of farm map in the context of crop monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., Morais, R., & Sousa, J. J. (2017). Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sensing, 9(11), 1110. https://doi.org/10.3390/rs9111110.

  • Arman, A., Bellini, P., Bologna, D., Nesi, P., Pantaleo, G., & Paolucci, M. (2021). Automating IoT data ingestion enabling visual representation. Sensors, 21(24), 8429. https://doi.org/10.3390/s21248429.

  • Appel, M., Lahn, F., Buytaert, W., & Pebesma, E. (2018). Open and scalable analytics of large earth observation datasets: From scenes to multidimensional arrays using scidb and gdal. ISPRS Journal of Photogrammetry and Remote Sensing, 138, 47–56.

    Article  Google Scholar 

  • Audebert, N., Saux, B. L., & Lefvre, S. (2017). Beyond rgb: Very high resolution urban remote sensing with multimodal deep networks. ISPRS Journal of Photogrammetry and Remote Sensing, 140, 20–32.

    Article  Google Scholar 

  • Ball, J. E., Anderson, D. T., & Chan, C. S. (2017). Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community. Journal of Applied Remote Sensing, 11, 042 609–1–042 609–54.

    Google Scholar 

  • Barrile, V., Simonetti, S., Citroni, R., Fotia, A., & Bilotta, G. (2022). Experimenting agriculture 4.0 with sensors: A data fusion approach between remote sensing, UAVs and self-driving tractors. Sensors, 22(20), 7910. https://doi.org/10.3390/s22207910.

  • Booysen, R., Zimmermann, R., Lorenz, S., Gloaguen, R, Nex, P. A. M., Andreani, L., & Mockel, R. (2018). Towards multiscale and multisource ¨ remote sensing mineral exploration using rpas. A case study in the lofdal carbonatite-hosted ree deposit, namibia. Remote Sensing.

    Google Scholar 

  • Alvarez-Vanhard, E., Corpetti, T., & Houet, T. (2021). UAV & satellite synergies for optical remote sensing applications: A literature review. Science of Remote Sensing, 3, 100019. https://doi.org/10.1016/j.srs.2021.100019

  • Ghamisi, P., et al. (2019). Multisource and multitemporal data fusion in remote sensing: A comprehensive review of the state of the art. In IEEE Geoscience and Remote Sensing Magazine, March 2019, vol. 7(1) (pp. 6–39). https://doi.org/10.1109/MGRS.2018.2890023.

  • Khan, M., Adeel, Y., Khurram, K., Faisal, S., & Asad, A. (2018). Automated forgery detection in multispectral document images using fuzzy clustering. https://doi.org/10.1109/DAS.2018.26.

  • Latchininsky, A.V., & Sivanpillai, R. (2010). Locust habitat monitoring and risk assessment using remote sensing and GIS technologies. In Ciancio, A., & Mukerji, K. (Eds.), Integrated management of arthropod pests and insect borne diseases. Integrated Management of Plant Pests and Diseases, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8606-8_7

  • López, A., Jurado, J. M., Ogayar, C. J., & Feito., F. R. (2021). A framework for registering UAV-based imagery for crop-tracking in precision agriculture. International Journal of Applied Earth Observation and Geoinformation, 97, 102274.https://doi.org/10.1016/j.jag.2020.102274

  • Ozdemir, A., & Polat, K. (2020). Deep learning applications for hyperspectral imaging: a systematic review. Journal of the Institute of Electronics and Computer, 2, 39–56. https://doi.org/10.33969/JIEC.2020.21004.

  • Simões, R. E. O., Câmara, G., de Queiroz, G. R., de Souza, F. C., de Andrade Neto, P. R., Santos, L. A., Carvalho, A., & Ferreira, K. R. (2021). Satellite image time series analysis for big earth observation data. ArXiv abs/2204.11301.

    Google Scholar 

  • Solberg, A. H. S. (2006). In Data fusion for remote-sensing applications.

    Google Scholar 

  • Zhu, X., Cai, F., Tian, J., & Williams, T. K.-A. (2018). Spatiotemporal fusion of multisource remote sensing data: Literature survey, taxonomy, principles, applications, and future directions. Remote Sensing, 10(4), 527. https://doi.org/10.3390/rs10040527.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srikrishnan Divakaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Divakaran, S. (2023). An Algorithmic Framework for Fusing Images from Satellites, Unmanned Aerial Vehicles (UAV), and Farm Internet of Things (IoT) Sensors. In: Chaudhary, S., Biradar, C.M., Divakaran, S., Raval, M.S. (eds) Digital Ecosystem for Innovation in Agriculture. Studies in Big Data, vol 121. Springer, Singapore. https://doi.org/10.1007/978-981-99-0577-5_4

Download citation

Publish with us

Policies and ethics