Skip to main content

Review of Numerical Algorithms for Aircraft Trajectory Optimization

  • Conference paper
  • First Online:
Proceedings of 3rd 2023 International Conference on Autonomous Unmanned Systems (3rd ICAUS 2023) (ICAUS 2023)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1170))

Included in the following conference series:

Abstract

Flight trajectory optimization is a crucial aspect of aircraft design, and the numerical algorithms for trajectory optimization have always been a hot and challenging topic in domestic and international research. Starting from the classical classification of trajectory optimization methods and combining with recent advancements in the field of trajectory optimization, this paper provides an overview of various numerical algorithms for flight trajectory optimization, including their principles and applications. Furthermore, the characteristics of different methods and their suitability for solving specific problems are analyzed, offering valuable insights for the practical application of optimization methods. Finally, a brief analysis of the development of trajectory optimization is presented, along with a prospective outlook on the future direction of flight trajectory optimization algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bao, W.: Present situation and development tendency of aerospace control techniques. Acta Automatica Sinica 39(6), 697–702 (2013)

    Article  Google Scholar 

  2. Dong, W., Wang, C., Wang, J., Xin, M.: Varying-gain proportional navigation guidance for precise impact time control. J. Guid. Control. Dyn. 46(3), 535–552 (2023)

    Article  Google Scholar 

  3. Gontumukkala, S.S.T., Godavarthi, Y.S.V., Gonugunta, B.R.R.T., Subramani, R.: Kalman Filter and Proportional Navigation Based Missile Guidance System, pp. 1731–1736. IEEE (2022)

    Google Scholar 

  4. Park, B., Kim, T., Tahk, M.: Optimal impact angle control guidance law considering the seeker’s field-of-view limits. Proc. Inst. Mech. Eng. Part G: J. Aerospace Eng. 227(8), 1347–1364 (2013)

    Article  Google Scholar 

  5. Kim, T., Park, B., Tahk, M.: Bias-shaping method for biased proportional navigation with terminal-angle constraint. J. Guid. Control. Dyn. 36(6), 1810–1816 (2013)

    Article  Google Scholar 

  6. Tekin, R., Erer, K.S.: Switched-gain guidance for impact angle control under physical constraints. J. Guid. Control. Dyn. 38(2), 205–216 (2015)

    Article  Google Scholar 

  7. Mall, K., Taheri, E.: Three-degree-of-freedom hypersonic reentry trajectory optimization using an advanced indirect method. J. Spacecr. Rocket. 59(5), 1463–1474 (2022)

    Article  Google Scholar 

  8. Mall, K., Taheri, E.: Entry trajectory optimization for Mars science laboratory class missions using indirect uniform trigonometrization method, 2020, pp. 4182–4187. IEEE (2020)

    Google Scholar 

  9. Lu, P., Pan, B.: Highly constrained optimal launch ascent guidance. J. Guid. Control. Dyn. 33(2), 404–414 (2010)

    Article  Google Scholar 

  10. Cui, N.G., Huang, P.X., Lu, F., Huang, R., Wei, C.: A hybrid optimization approach for rapid endo-atmospheric ascent trajectory planning of launch vehicles. Acta Aeronautica Et Astronautica Sinica 36(6), 1915–1923 (2015)

    Google Scholar 

  11. Hull, D.G., Speyer, J.L.: Optimal reentry and plane-change trajectories. In: AIAA, Astrodynamics Specialist Conference (1981)

    Google Scholar 

  12. Whitley, R., Ocampo, C.: Direct multiple shooting optimization with variable problem parameters. In: 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, p. 803 (2009)

    Google Scholar 

  13. Greco, C., Di Carlo, M., Vasile, M., Epenoy, R.: Direct multiple shooting transcription with polynomial algebra for optimal control problems under uncertainty. Acta Astronaut. 170, 224–234 (2020)

    Article  Google Scholar 

  14. Guo, W., Zhao, Y.J., Capozzi, B.: Optimal unmanned aerial vehicle flights for seeability and endurance in winds. J. Aircr. 48(1), 305–314 (2011)

    Article  Google Scholar 

  15. Silva, W., Frew, E.W.: Experimental assessment of online dynamic soaring optimization for small unmanned aircraft. AIAA Infotech@ Aerospace (2016)

    Google Scholar 

  16. Khan, N., Zollars, M., MacDermott, R.: Direct Collocation Methods for Hypersonic Trajectory Optimization by the Process of Continuation, 2023, pp. 1–9. IEEE (2023)

    Google Scholar 

  17. Darby, C.L.: hp-Pseudospectral method for solving continuous-time nonlinear optimal control problems. University of Florida (2011)

    Google Scholar 

  18. Darby, C.L., Hager, W.W., Rao, A.V.: An hp-adaptive pseudospectral method for solving optimal control problems. Optimal Control Appl. Methods 32(4), 476–502 (2011)

    Article  MathSciNet  Google Scholar 

  19. Gui, W., Babuska, I.: The hp and hp Versions of the Finite Element Method in 1 Dimension. Part 3. The Adaptive hp Version. Numerische Mathematik 49(6), 659–683 (1986)

    Google Scholar 

  20. Liu, G., Li, B., Ji, Y.: A modified HP-adaptive pseudospectral method for multi-UAV formation reconfiguration. ISA Trans. 129, 217–229 (2022)

    Article  Google Scholar 

  21. Liu, X., Shen, Z., Lu, P.: Solving the maximum-crossrange problem via successive second-order cone programming with a line search. Aerosp. Sci. Technol. 47, 10–20 (2015)

    Article  Google Scholar 

  22. Liu, X., Lu, P.: Solving nonconvex optimal control problems by convex optimization. J. Guid. Control. Dyn. 37(3), 750–765 (2014)

    Article  Google Scholar 

  23. Liu, X., Shen, Z., Lu, P.: Entry trajectory optimization by second-order cone programming. J. Guid. Control. Dyn. 39(2), 227–241 (2016)

    Article  Google Scholar 

  24. Szmuk, M., Acikmese, B.: Successive convexification for 6-dof mars rocket powered landing with free-final-time. In: 2018 AIAA Guidance, Navigation, and Control Conference, p. 0617 (2018)

    Google Scholar 

  25. Mao, Y., Dueri, D., Szmuk, M., Acikmese, B.: Successive convexification of non-convex optimal control problems with state constraints. IFAC-PapersOnLine 50(1), 4063–4069 (2017)

    Article  Google Scholar 

  26. Harris, M.W., Acikmese, B.: Lossless convexification for a class of optimal control problems with quadratic state constraints. In: 2013 American Control Conference. IEEE, pp. 3415–3420 (2013)

    Google Scholar 

  27. Scheffe, P., Henneken, T.M., Kloock, M., Alrifaee, B.: Sequential convex programming methods for real-time optimal trajectory planning in autonomous vehicle racing. IEEE Trans. Intell. Vehicles 8(1), 661–672 (2022)

    Article  Google Scholar 

  28. Pinson, R.M., Lu, P.: Trajectory design employing convex optimization for landing on irregularly shaped asteroids. J. Guid. Control. Dyn. 41(6), 1243–1256 (2018)

    Article  Google Scholar 

  29. Szmuk, M., Reynolds, T.P., Acikmese, B.: Successive convexification for real-time six-degree-of-freedom powered descent guidance with state-triggered constraints. J. Guid. Control. Dyn. 43(8), 1399–1413 (2020)

    Article  Google Scholar 

  30. Wang, Z., Lu, Y.: Improved sequential convex programming algorithms for entry trajectory optimization. J. Spacecr. Rocket.57(6), 1373–1386 (2020)

    Article  Google Scholar 

  31. Hartl, R.F., Sethi, S.P., Vickson, R.G.: A survey of the maximum principles for optimal control problems with state constraints. SIAM Rev. 37(2), 181–218 (1995)

    Article  MathSciNet  Google Scholar 

  32. Harris, M.W., Acikmese, B.: Maximum divert for planetary landing using convex optimization. J. Optim. Theory Appl. 162(3), 975–995 (2014)

    Article  MathSciNet  Google Scholar 

  33. Kunhippurayil, S., Harris, M.W., Jansson, O.: Lossless convexification of optimal control problems with annular control constraints. Automatica 133, 109848 (2021)

    Article  MathSciNet  Google Scholar 

  34. Malyuta, D., Acikmese, B.: Lossless convexification of optimal control problems with semi-continuous inputs. IFAC-PapersOnLine 53(2), 6843–6850 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingrui Hao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Beijing HIWING Scientific and Technological Information Institute

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, Y., Liu, J., Li, F., Hao, M. (2024). Review of Numerical Algorithms for Aircraft Trajectory Optimization. In: Qu, Y., Gu, M., Niu, Y., Fu, W. (eds) Proceedings of 3rd 2023 International Conference on Autonomous Unmanned Systems (3rd ICAUS 2023). ICAUS 2023. Lecture Notes in Electrical Engineering, vol 1170. Springer, Singapore. https://doi.org/10.1007/978-981-97-1107-9_50

Download citation

Publish with us

Policies and ethics