Skip to main content

A Multidimensional Multitemperature Gas Dynamic and the Neutrino Spectrum in 2D Gravitational Collapse

  • Conference paper
  • First Online:
Smart Modelling For Engineering Systems

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 214))

  • 228 Accesses

Abstract

A multitemperature code intended for the numerical solution of the multicomponent gas dynamics equations in problems with a high energy density in matter is described. The velocities of all components with “nonzero” masses are assumed to be identical. The gas dynamic part is based on the Godunov’s scheme and an efficient Riemann problem solver with an approximate local equation of state. As an example of the code application, the gravitational collapse of the massive star’s core with a neutrino transport is considered. A self-consistent formulation of the gravitational collapse is solved using 2D gas dynamics, taking into account the spectral transport of neutrinos in the framework of neutrino flux-limited diffusion. Large-scale convection leads to an increase in the mean energy of the neutrinos from 10 to 15 MeV, which is important for explaining supernovae, as well as, for designing experiments on detecting high-energy neutrinos from supernovae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Basko, M.M., Churazov, M.D., Aksenov, A.G.: Prospects of heavy ion fusion in cylindrical geometry. Laser Part. Beams 20, 411–414 (2002)

    Article  Google Scholar 

  2. Anisimov, S.I., Zhakhovskii, V.V., Inogamov, N.A., Nishihara, K., Petrov, Y.V., Khokhlov, V.A.: Ablated matter expansion and crater formation under the action of ultrashort laser pulse. JETP 103, 183–197 (2006)

    Article  Google Scholar 

  3. Fortov, V.E., Hoffmann, D.H., Sharkov, B.Y.: Intense ion beams for generating extreme states of matter. Adv. Phys. Sci. 178(2), 113–138 (2008). (in Russian)

    Google Scholar 

  4. Bruenn, S.W.: Stellar core collapse: numerical model and infall epoch. Astrophys. J. Suppl. 58, 771–841 (1985)

    Article  Google Scholar 

  5. Miller, G.H., Puckett, E.G.: A high-order Godunov method for multiple condensed phases. J. Comput. Phys. 128, 134–164 (1996)

    Article  Google Scholar 

  6. Pelanti, M., Shyue, K.-M.: A mixture-energy-consistent six-equation two-phasenumerical model for fluids with interfaces, cavitation and evaporation waves. J. Comput. Phys. 259, 331–357 (2014)

    Article  MathSciNet  Google Scholar 

  7. Aksenov, A.G.: Computation of shock waves in plasma. Comput. Math. Math. Phys. 55, 1752–1769 (2015)

    Article  MathSciNet  Google Scholar 

  8. Aksenov, A.G., Chechetkin, V.M., Tishkin, V.F.: Godunov type method and the shafranov’s task for multi-temperature plasma. Math. Models Comput. Simul. 11, 360–373 (2019)

    Article  MathSciNet  Google Scholar 

  9. Vereshchagin, G.V., Aksenov, A.G.: Relativistic kinetic theory with applications in astrophysics and cosmology. Cambridge University Press (2017)

    Google Scholar 

  10. Aksenov, A.G., Chechetkin, V.M.: Supernova explosion mechanism with the neutrinos and the collapse of the rotation core. Astron. Rep. 62, 834–839 (2018)

    Article  Google Scholar 

  11. Aksenov, A.G., Chechetkin, V.M.: Large-scale instability during gravitational collapse and the escaping neutrino spectrum during a supernova explosion. Astron. Rep. 63, 900–909 (2019)

    Article  Google Scholar 

  12. Shafranov, V.D.: The structure of shock waves in a plasma. Sov. Phys. JETP 5, 1183–1188 (1957). (in Russian)

    Google Scholar 

  13. Dolence, J.C., Burrows, A., Zhang, W.: Two-dimensional core-collapse supernova models with multi-dimensional transport. Astroph. J. 800, 10.1–10.14 (2015)

    Google Scholar 

  14. Gear, C.W.: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, Inc., Englewood Cliffs (1971)

    MATH  Google Scholar 

  15. Colella, P., Woodward, P.R.: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54, 174–201 (1984)

    Article  Google Scholar 

  16. Colella, P., Glaz, H.M.: Efficient solution algorithms for the Riemann problem for real gases. J. Comput. Phys. 59, 264–289 (1985)

    Article  MathSciNet  Google Scholar 

  17. Fowler, W.A., Hoyle, F.: Neutrino processes and pair formation in massive stars and supernovae. Astrophys. J. Suppl. 9, 201–319 (1964)

    Article  Google Scholar 

  18. Aksenov, A.G., Chechetkin, V.M.: Computations of the collapse of a stellar iron core allowing for the absorption, emission, and scattering of electron neutrinos and anti-neutrinos. Astron. Rep. 56, 193–206 (2012)

    Article  Google Scholar 

  19. Bethe, H.A.: Supernova mechanisms. Rev. Mod. Phys. 62, 801–866 (1990)

    Article  Google Scholar 

  20. Imshennik, V.S., Nadezhin, D.K.: Supernova 1987A in the large magellanic cloud: observations and theory. Astrophys. Space Phys. Rev. 8, 1–147 (1989)

    Google Scholar 

  21. Herant, M., Benz, W., Hix, W.R., Fryer, C.L., Colgate, S.A.: Inside the supernova: a powerful convective engine. ApJ 435, 339–361 (1994)

    Article  Google Scholar 

  22. Wongwathanarat, A., Muller, E., Janka, H.-T.: Three-dimensional simulations of core-collapse supernovae: From shock revival to shock breakout. Astronony Astroph. 577, A48.1–A48.20 (2015)

    Google Scholar 

  23. Couch, S.M., Ott, C.D.: The role of turbulence in neutrino-driven core-collapse supernova explosions. Astrophys. J. 799, 5.1–5.12 (2015)

    Google Scholar 

  24. Chechetkin, V.M., Aksenov, A.G.: Supernova-explosion mechanism involving neutrinos. Phys. At. Nucl. 81, 128–138 (2018)

    Article  Google Scholar 

  25. Aksenov, A.G., Chechetkin, V.M.: Large-scale instability during gravitational collapse with neutrino transport and a core-collapse supernova. Astron. Rep. 62, 251–263 (2018)

    Article  Google Scholar 

  26. Baikov, I.V., Suslin, V.M., Chechetkin, V.M., Bychkov, V., Stenflo, L.: Radiation of a neutrino mechanism for type II supernovae. Astron. Rep. 51, 274–281 (2007)

    Article  Google Scholar 

  27. Bisnovatyi-Kogan, G.S.: Analytic solution for kinetic equilibrium with respect to beta-processes in nucleon plasmas with relativistic pairs. Astrophysics 55, 387–396 (2012)

    Article  Google Scholar 

  28. Aksenov, A.G., Blinnikov, S.I.: A Newton iteration method for obtaining equilibria of rapidly rotating stars. Astron. Astrophys. 290, 674–681 (1994)

    Google Scholar 

  29. Burrows, A.: Convection and the mechanism of Type II supernovae. ApJ Lett. 318, L57–L61 (1987)

    Article  Google Scholar 

  30. Bionta, R.M., Blewitt, G., Bratton, C.B., Casper, D., Ciocio, A.: Observation of a neutrino burst in coincidence with supernova 1987A in the large magellanic cloud. Phys. Rev. Lett. 58, 1494–1496 (1987)

    Google Scholar 

  31. Hirata, K., Kajita, T., Koshiba, M., Nakahata, M., Oyama, Y.: Observation of a neutrino burst from the supernova SN1987A. Phys. Rev. Lett. 58, 1490–1493 (1987)

    Article  Google Scholar 

  32. Schaeffer, R., Declais, Y., Jullian, S.: The neutrino emission of SN1987A. Nature 330, 142–144 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey G. Aksenov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aksenov, A.G. (2021). A Multidimensional Multitemperature Gas Dynamic and the Neutrino Spectrum in 2D Gravitational Collapse. In: Favorskaya, M.N., Favorskaya, A.V., Petrov, I.B., Jain, L.C. (eds) Smart Modelling For Engineering Systems. Smart Innovation, Systems and Technologies, vol 214. Springer, Singapore. https://doi.org/10.1007/978-981-33-4709-0_6

Download citation

Publish with us

Policies and ethics