Skip to main content

Seismic Evaluation of Two-Storied Unreinforced Masonry Building with Rigid Diaphragm Using Nonlinear Static Analysis

  • Conference paper
  • First Online:
Smart Modelling For Engineering Systems

Abstract

The present work investigates the seismic evaluation of two-storied unreinforced masonry building with rigid diaphragm when subjected to seismic lateral loading. The work consists of three-dimensional modeling of two-storied masonry building, which forms a common building stock in India. Nonlinear analysis is performed using SAP 2000 software. The building is designed for Bhuj (Zone V). After nonlinear analysis, retrofitting of masonry building is done by providing bond beam designed as per IS 4326:1993. The demands are calculated as per IS 1893:2002 and FEMA-356 (2000) and compared with the capacity of building obtained from nonlinear static curves. The main objective of the work is to perform pushover analysis on the masonry building in order to assess its performance for Bhuj (Zone V).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Golubev, V.I., Muratov, M.V., Petrov, I.B.: Different approaches for solving inverse seismic problems in fractured media. In: Jain, L.C., Favorskaya, M.N., Nikitin, I.S., Reviznikov, D.L. (eds.) Advances in Theory and Practice of Computational Mechanics: Proceedings of the 21st International Conference on Computational Mechanics and Modern Applied Software Systems, SIST, vol. 173, pp. 199–212. Springer, Singapore (2020)

    Google Scholar 

  2. Nikitin, I.S., Burago, N.G., Golubev, V.I., Nikitin, A.D.: Methods for calculating the dynamics of layered and block media with nonlinear contact conditions. In: Jain, L.C., Favorskaya, M.N., Nikitin, I.S., Reviznikov, D.L. (eds.) Advances in Theory and Practice of Computational Mechanics: Proceedings of the 21st International Conference on Computational Mechanics and Modern Applied Software Systems, SIST, vol. 173, pp. 171–183. Springer, Singapore (2020)

    Google Scholar 

  3. Bagaev, R.A., Golubev, V.I., Golubeva, YuA: Full-wave 3D earthquake simulation using the double-couple model and the grid-characteristic method. Comput. Res. Mod. 11(6), 1061–1067 (2019)

    Article  Google Scholar 

  4. FEMA-356 Prestandard and commentary for the seismic rehabilitation of buildings. Washington DC (2000)

    Google Scholar 

  5. Agarwal, P., Shrikhande, M.: Earthquake resistant design of structures. PHI Learning Private Limited, New Delhi (2009)

    Google Scholar 

  6. IS-1893 Indian standard criteria for earthquake resistant design of structures, Fifth Revision Part-1, Bureau of Indian Standards, New Delhi (2016)

    Google Scholar 

  7. IS-4326 Code of Practice for Earthquake Resistant Design and Construction of Building, Second Revision (1993)

    Google Scholar 

  8. USGS Homepage. https://www.usgs.gov/products/maps/topo-map. Last accessed 21 May 2020

  9. Binnani, N., Khare, R.K., Golubev, V.I., Petrov, I.B.: Probabilistic seismic hazard analysis of Punasa dam site in India. In: Petrov, I.B., Favorskaya, A.V., Favorskaya, M.N., Simakov, S.S., Jain, L.C. (eds.) Smart Modeling for Engineering Systems: Proceedings of the Conference 50 Years of the Development of Grid-Characteristic Method: Proceedings of Smart Modeling for Engineering Systems. GCM50 2018. SIST, vol. 133, pp. 105–119. Springer International Publishing AG, Cham, Switzerland (2019)

    Google Scholar 

  10. SAP2000 Integrated Software for Structural Analysis and Design. Version 14.0. Computers & Structures, Inc., Berkeley, California (2014)

    Google Scholar 

  11. Kaushik, H.B., Rai, D.C., Jain, S.K.: Uniaxial compressive stress-strain model for clay brick masonry. Curr. Sci. 92(4), 497–501 (2007)

    Google Scholar 

  12. Kaushik, H.B., Rai, D.C., Jain, S.K.: Stress-Strain characteristics of clay brickmasonry under uniaxial compression. J. Mater Civil Eng 19(9), 728–739 (2007)

    Article  Google Scholar 

  13. IS-1905 Indian standard criteria for structural use of unreinforced masonry. Third Revision. Bureau of Indian Standards, New Delhi (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, A., Golubev, V.I., Khare, R.K. (2021). Seismic Evaluation of Two-Storied Unreinforced Masonry Building with Rigid Diaphragm Using Nonlinear Static Analysis. In: Favorskaya, M.N., Favorskaya, A.V., Petrov, I.B., Jain, L.C. (eds) Smart Modelling For Engineering Systems. Smart Innovation, Systems and Technologies, vol 214. Springer, Singapore. https://doi.org/10.1007/978-981-33-4709-0_15

Download citation

Publish with us

Policies and ethics