Skip to main content

Investigation of Models with Fluid- and Gas-Filled Fractures with the Help of the Grid-Characteristic Method

  • Conference paper
  • First Online:
Smart Modelling For Engineering Systems

Abstract

Heterogeneous media with fractured geological structures are widely spread, and therefore, they need a very careful exploration. In this work, we present the results of modeling the seismic waves spread through the homogeneous and heterogeneous media with single fractures and fracture clusters using the grid-characteristic method. We analyze the seismic reflections from inclined fractured structures described by the model of a two shore extremely thin fracture. The models with little differing and significantly differing characteristics for single fluid- and gas-filled fractures and fracture clusters are analyzed. The results demonstrate the dependence of the normal components of the velocity distribution from the media parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schoenberg, M.: Elastic wave behavior across linear slip interfaces. J. Acoust. Soc. Am. 68(5), 1516–1521 (1980)

    Article  Google Scholar 

  2. Hudson, J.A.: Overall properties of a cracked solid. Math Proc Cambridge Philos. Soc. 88, 371–384 (1980)

    Article  MathSciNet  Google Scholar 

  3. Nikitin, I.S., Burago, N.G., Golubev, V.I., Nikitin, A.D.: Mathematical modeling of the dynamics of layered and block media with nonlinear contact conditions on supercomputers. J. Phys. Conf. Ser. 1392, 012057.1–012057.6 (2019)

    Google Scholar 

  4. Muratov, M.V., Petrov, I.B.: Application of mathematical fracture models to simulation of exploration seismology problems by the grid-characteristic method. Compu. Res. Model. 11(6), 1077–1082 (2019)

    Article  Google Scholar 

  5. Zhan, Q., Sun, Q., Ren, Q.: A discontinuous Galerkin method for simulating the effects of arbitrary discrete fractures on elastic wave propagation. Geophys. J. Int. 210(2), 1219–1230 (2017)

    Article  Google Scholar 

  6. Khokhlov, N., Stognii, P.: Novel approach to modeling the seismic waves in the areas with complex fractured geological structures. Minerals 10(2), 122.1–122.17 (2020)

    Google Scholar 

  7. Ivanov, A.M., Khokhlov, N.I.: Efficient inter-process communication in parallel implementation of grid-characteristic method. In: Petrov, I., Favorskaya, A. (eds.) Smart Modeling for Engineering Systems. GCM50 2018. Smart Innovation, SIST, vol. 133, pp. 91–102. Springer, Cham (2019)

    Google Scholar 

  8. Savin, G.N., Rushchitskii, Y.Y., Novatskii, V.: The theory of elasticity. Sov. Appl. Math. 7, 808–811 (in Russian) (1971)

    Google Scholar 

  9. Ivanov, A.M., Khokhlov, N.I.: Parallel implementation of the grid-characteristic method in the case of explicit contact boundaries. Comput. Res. Model. 10(5), 667–678 (2018)

    Article  Google Scholar 

  10. Cerquaglia, M.L., Deliege, G., Boman, R., Terrapon, V., Ponthot, J.-P.: Free-slip boundary conditions for simulating free-surface incompressible flows through the particle finite element method. Int. J. Numer. Meth. Eng. 110(10), 921–946 (2017)

    Article  MathSciNet  Google Scholar 

  11. Huang, L.-J., Mora, P., Fehler, M.C.: Absorbing boundary and free-surface conditions in the phononic lattice solid by interpolation. Geophys. J. Int. 140(1), 147–157 (2000)

    Article  Google Scholar 

  12. Muratov, M., Petrov, I., Leviant, V.: Grid-characteristic method as optimal tool of fracture formations research. In: European Association of Geoscientists & Engineers. Conference Proceedings, vol. 2018, pp. 1–6. Saint Petersburg (2018)

    Google Scholar 

  13. Petrov, I.B., Muratov, M.V.: The application of grid-characteristic method in solution of fractured formations exploration seismology direct problems (review article). Matem. Mod. 31(4), 33–56 (2019)

    Article  Google Scholar 

  14. Muratov, M.V., Petrov, I.B., Levyant, V.B.: The development of fracture mathematical models for numerical solution of exploration seismology problems with the use of grid-characteristic method. Comput. Res. Model. 8(6), 911–925 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The reported study was funded by RFBR according to the research project № 18-01-00710 A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Polina V. Stognii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stognii, P.V., Khokhlov, N.I. (2021). Investigation of Models with Fluid- and Gas-Filled Fractures with the Help of the Grid-Characteristic Method. In: Favorskaya, M.N., Favorskaya, A.V., Petrov, I.B., Jain, L.C. (eds) Smart Modelling For Engineering Systems. Smart Innovation, Systems and Technologies, vol 214. Springer, Singapore. https://doi.org/10.1007/978-981-33-4709-0_11

Download citation

Publish with us

Policies and ethics