Skip to main content

IoT-Based Automotive Collision Avoidance and Safety System for Vehicles

  • Conference paper
  • First Online:
Third Congress on Intelligent Systems (CIS 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 613))

Included in the following conference series:

  • 320 Accesses

Abstract

Road accidents claim over a million lives every year. Some of the causes of these accidents are poor visibility of roads, false estimation of nearby vehicles and delay of driver to hit the brake. The developed IoT-based system focuses on reduction of accidents by addressing these causes. It alerts the driver about the presence of humps and potholes on the road by detecting it in advance. The visual alerts are provided by various coloured LEDs and the audio alert is provided using voice communication. The system also measures distance between the host vehicle and the vehicle ahead to maintain a safe distance of 400 m and warns the driver if safe distance is not maintained. This feature also helps in avoiding collisions with other vehicles and unidentified objects. In the worst-case scenario, if an accident occurs, this system tracks the vehicle's geographical location and provides a message alert to the registered emergency contacts. The system is equipped with vehicle-to-vehicle communication for data transmission amongst vehicles using Li-Fi technology. The range of this V2V communication is up to 2–3 m. With this feature, the host vehicle can transmit information about emergency brake situations and presence of emergency service vehicles in the vicinity for clearing the driving path. Audio and visual mechanisms are employed for alerting the driver. The system is developed by incorporating ultrasonic sensors with Arduino for testing purposes. Every feature of the system is tested with real vehicles in simulated circumstances. The performance of the system is satisfactory in all test environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Road Transport Year Book 2016–2017, Ministry of Road Transport and Highways. https://morth.nic.in/sites/default/files/Road%20Transport%20Year%20Book%202016-17.pdf. Last accessed 23 Sept 2021

  2. Car fleet growing faster than population, CBS home page. https://www.cbs.nl/en-gb/news/2020/10/car-fleet-growing-faster-than-population. Last accessed 09 Sept 2021

  3. Kumar GA, Kumar AS, Kumar AA, Maharajothi T (2017) Road quality management system using mobile sensors. In: 2017 International conference on innovations in information, embedded and communication systems (ICIIECS), India, pp 1–6. https://doi.org/10.1109/ICIIECS.2017.8276014

  4. Jo Y, Ryu S (2015) Pothole detection system using a black-box camera. Sensors 15(11):29316–29331

    Article  Google Scholar 

  5. Road traffic injuries. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries. Last accessed 19 June 2022

  6. More than 3500 accidents took place in India due to potholes in 2020. HT Auto. https://auto.hindustantimes.com/auto/news/more-than-3-500-accidents-took-place-in-india-due-to-potholes-in-2020-41628571000162.html. Last accessed 10 Sept 2021

  7. Road Safety, Ministry of Road Transport & Highways, Government of India. https://morth.nic.in/road-safety. Last accessed 10 Oct 2021

  8. Khaliq KA, Chughtai O, Shahwani A, Qayyum A, Pannek J (2019) Road accidents detection, data collection and data analysis using V2X communication and edge/cloud computing. Electronics 8(8):896. https://doi.org/10.3390/electronics8080896

    Article  Google Scholar 

  9. Tachwali Y, Refai HH (2009) System prototype for vehicle collision avoidance using wireless sensors embedded at intersections. J Franklin Inst 346(5):488–499

    Article  MATH  Google Scholar 

  10. Javed Mehedi Shamrat FM, Chakraborty S, Afrin S, Moharram M, Amina M, Roy T (2022) A model based on convolutional neural network (CNN) for vehicle classification. In: Congress on intelligent systems, Springer, Singapore, pp 519–530

    Google Scholar 

  11. Kavitha N, Chandrappa DN (2020) Vision-based vehicle detection and tracking system. In: Congress on intelligent systems, Springer, Singapore, pp 353–364

    Google Scholar 

  12. Seegolam S, Pudaruth S (2022) A real-time traffic jam detection and notification system using deep learning convolutional networks. In: Congress on intelligent systems, Springer, Singapore, pp 461–475

    Google Scholar 

  13. Madli R, Hebbar S, Pattar P, Golla V (2015) Automatic detection and notification of potholes and humps on roads to aid drivers. IEEE Sens J 15(8):4313–4318

    Article  Google Scholar 

  14. Tushara DB, Vardhini PH (2016) Wireless vehicle alert and collision prevention system design using Atmel microcontroller. In: 2016 International conference on electrical, electronics, and optimization techniques (ICEEOT), India, pp 2784–2787

    Google Scholar 

  15. Khan RA, Gogoi A, Srivastava R, Tripathy SK, Manikandaswamy S (2019) Automobile collision warning and identification system using visible light and Wi-Fi communication. Int J Eng Adv Technol 8(583):72–77

    Google Scholar 

  16. Bhavthankar S, Sayyed HG (2015) Wireless system for vehicle accident detection and reporting using accelerometer and GPS. Int J Sci Eng Res 6(8):1068–1071

    Google Scholar 

  17. Shaik A, Bowen N, Bole J, Kunzi G, Bruce D, Abdelgawad A, Yelamarthi K (2018) Smart car: An IoT based accident detection system. In: 2018 IEEE global conference on internet of things (GCIoT), Egypt, pp 1–5

    Google Scholar 

  18. Vairavan R, Kumar SA, Ashiff LS, Jose CG (2018) Obstacle avoidance robotic vehicle using ultrasonic sensor, Arduino controller. Int Res J Eng Technol (IRJET) 5(02)

    Google Scholar 

  19. Arjapure S, Kalbande DR (2021) Deep learning model for pothole detection and area computation. In: 2021 IEEE International conference on communication information and computing technology (ICCICT), India, pp 1–6

    Google Scholar 

  20. Ravikumar DNS, Nagarajan G (2018) Vehicle to vehicle communication using Li-Fi technology. Int J Pure Appl Math 119(7):519–522

    Google Scholar 

  21. Alquhali AH, Roslee M, Alias MY, Mohamed KS (2019) Iot based real-time vehicle tracking system. In: 2019 IEEE Conference on sustainable utilization and development in engineering and technologies (CSUDET), Malaysia, IEEE, pp 265–270

    Google Scholar 

  22. Gomes T, Fernandes D, Ekpanyapong M, Cabral J (2016) An IoT-based system for collision detection on guardrails. In: 2016 IEEE International conference on industrial technology (ICIT), Taiwan, pp 1926–1931

    Google Scholar 

  23. Alzahri FBB, Sabudin M (2016) Vehicle tracking device. In: 2016 International conference on advanced informatics: concepts, theory and application (ICAICTA), Malaysia, pp 1–6

    Google Scholar 

  24. Hussein LF, Aissa AB, Mohamed IA, Alruwaili S, Alanzi A (2021) Development of a secured vehicle spot detection system using GSM. Int J Interact Mobile Technol 15(4)

    Google Scholar 

  25. Chaturvedi N, Srivastava P (2018) Automatic vehicle accident detection and messaging system using GSM and GPS modem. Int Res J Eng Technol 05(03):252–254

    Google Scholar 

  26. Damani A, Shah H, Shah K, Vala M (2015) Global positioning system for object tracking. Int J Comput Appl 109(8):3977–3984

    Google Scholar 

  27. Wakure AR, Patkar AR, Dagale MV, Solanki PP (2014) Vehicle accident detection and reporting system using GPS and GSM. Int J Eng Res Develop 10(4):25–28

    Google Scholar 

  28. Fogue M, Garrido P, Martinez FJ, Cano JC, Calafate CT, Manzoni P (2012) Automatic accident detection: aAssistance through communication technologies and vehicles. IEEE Veh Technol Mag 7(3):90–100

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipali Ramdasi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramdasi, D., Bhoge, L., Jiby, B., Pembarti, H., Phadatare, S. (2023). IoT-Based Automotive Collision Avoidance and Safety System for Vehicles. In: Kumar, S., Sharma, H., Balachandran, K., Kim, J.H., Bansal, J.C. (eds) Third Congress on Intelligent Systems. CIS 2022. Lecture Notes in Networks and Systems, vol 613. Springer, Singapore. https://doi.org/10.1007/978-981-19-9379-4_48

Download citation

Publish with us

Policies and ethics