Skip to main content

Intelligent System for Countering Groups of Robots Based on Reinforcement Learning Technologies

  • Chapter
  • First Online:
Frontiers in Robotics and Electromechanics

Abstract

Since the end of the last century, reinforcement learning has succeeded in the simplest computer games and modern games, and under special conditions of learning. The article describes the work on transferring actual strategic tasks to the game environment in order to approximate the function of their solution using reinforcement learning methods. The authors are faced with the task of battle of robots, for a successful solution of which it is necessary to make strategic decisions. The relevance of the problem lies in its difficult to formalize and the possibility of its transfer to other spheres of society, for successful functioning in which there are not enough methods based on linear logic. The task is formalized for model-free and model-based methods, off-policy and on-policy algorithms. Particular attention is paid to the development and understanding of the reward function and the neural network model. Article also presents comparison of simulation results under different conditions and methods of solution that affect the quality of the approximated policy. In the conclusion, authors give an analysis of achieved results, further methods for the development of the solved problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gawehn, E., Hiss, J.A., Schneider, G.: Deep learning in drug discovery. Mol. Inf. 35(1), 3–14 (2016)

    Article  Google Scholar 

  2. Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., Li, B., Madabhushi, A., Shah, P., Spitzer, M., Zhao, S.: Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discovery 18(6), 463–477 (2019)

    Article  Google Scholar 

  3. Marcus, G.: Deep Learning: A Critical Appraisal. arXiv preprint arXiv:180100631 (2018)

  4. Medvedev, M., Pshikhopov, V., Gurenko, B., Hamdan, N.: Path planning method for mobile robot with maneuver restrictions. In: Proceeding of the International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME) 7–8 October (2021). https://doi.org/10.1109/ICECCME52200.2021.9591090

  5. Kostjukov, V.A., Medvedev, M.Y.E., Pshikhopov, V.K.: Method for optimizing of mobile robot trajectory in repeller sources field. Inf. Autom. 20(3), 690–726 (2021)

    Google Scholar 

  6. Medvedev, M., Kostjukov, V., Pshikhopov, V.: Optimization of mobile robot movement on a plane with finite number of repeller sources. SPIIRAS Proc. 19(1), 43–78 (2020). https://doi.org/10.15622/sp.2020.19.1.2

  7. Pshikhopov, V., Medvedev, M.: Multi-loop adaptive control of mobile objects in solving trajectory tracking tasks. Autom. Remote. Control. 81(11), 2078–2093 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Medvedev, M., Pshikhopov, V.: Path planning of mobile robot group based on neural networks. In: International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, pp. 51–62 (2020)

    Google Scholar 

  9. Gaiduk, A.R., Martjanov, O.V., Medvedev, M.Y., Pshikhopov, V.K., Hamdan, N., Farhood, A.: Neural network based control system for robots group operating in 2-d uncertain environment. Mechatron. Autom. Control 21(8), 470–479 (2020)

    Google Scholar 

  10. Liu, Q., Wu, Y.: Supervised learning. In: Web Data Mining, pp. 63–112 (2012). https://doi.org/10.1007/978-1-4419-1428-6_451

  11. Alloghani, M., Al-Jumeily Obe, D., Mustafina, J., Hussain, A., Aljaaf, A.: A Systematic Review on Supervised and Unsupervised Machine Learning Algorithms for Data Science (2020). https://doi.org/10.1007/978-3-030-22475-2_1

  12. Reddy, Y.C.A.P., Viswanath, P., Reddy, B.E.: Semi-supervised learning: a brief review. Int. J. Eng. Technol. 7(8.1), 81 (2018). https://doi.org/10.14419/ijet.v7i1.8.9977

  13. Sharma, R., Prateek, M., Sinha, A.: Use of reinforcement learning as a challenge: a review. Int. J. Comput. Appl. 69, 28–34 (2013). https://doi.org/10.5120/12105-8332

  14. Sallab, A., Rashwan, M.: Self-learning Machines using Deep Networks (2011). https://doi.org/10.1109/SoCPaR.2011.6089108

  15. Kanishka Nithin, D., Bagavathi, S.P.: Generic feature learning in computer vision. Proc. Comput. Sci. 58, 202–209 (2015). https://doi.org/10.1016/j.procs.2015.08.054

    Article  Google Scholar 

  16. Charbuty, B., Abdulazeez, A.: Classification based on decision tree algorithm for machine learning. J. Appl. Sci. Technol. Trends 2(01), 20–28 (2021)

    Article  Google Scholar 

  17. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT Press (2018)

    Google Scholar 

  18. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., Hassabis, D.: Human level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  19. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of go with deep neural networks and tree search. Nature 529, 484–489 (2016)

    Article  Google Scholar 

  20. Balducci, F., Grana, C., Cucchiara, R.: Affective level design for a role-playing videogame evaluated by a brain-computer interface and machine learning methods. Vis. Comput. 33, 1–15 (2016)

    Google Scholar 

  21. Cruz, R.M., Sabourin, R., Cavalcanti, G.D., Ren, T.I.: META-DES: a dynamic ensemble selection framework using meta-learning. Pattern Recogn. 48(5), 1925–1935 (2015)

    Article  Google Scholar 

  22. Schaeffer, J., Lake, R., Lu, P., Bryant, M.: Chinook the world man-machine checkers champion. AI Mag. 17(1), 21–21 (1996)

    Google Scholar 

  23. Campbell, M., Hoane, A.J., Hsu, F.: Deep blue. Artif. Intell. 134(1), 57–83 (2002)

    Article  MATH  Google Scholar 

  24. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Leg, S., Hassabis, D.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  25. Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P., Dennison, C., Farhi, D., Fischer, Q., Hashme, S., Hesse, C., Józefowicz, R.: Dota 2 with Large Scale Deep Reinforcement Learning. arXiv preprint arXiv:1912.06680 (2019)

  26. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y.: Mastering the game of go without human knowledge. Nature 550(7676), 354–359 (2017)

    Article  Google Scholar 

  27. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal Policy Optimization Algorithms. arXiv:1707.06347 (2017)

  28. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.: Continuous control with deep reinforcement learning. In: International Conference on Learning Representations (ICLR) (2016)

    Google Scholar 

  29. Christodoulou, P.: Soft Actor-Critic for Discrete Action Settings. arXiv preprint arXiv:1910.07207 (2019)

  30. Pu, Y., Wang, S., Yao, X. Li, B.: Context-Based Soft Actor Critic for Environments with Non-stationary Dynamics. arXiv preprint arXiv:2105.03310 (2021)

  31. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal Policy Optimization Algorithms. arXiv preprint arXiv:1707.06347 (2017)

  32. He, K., Zhang, X., Ren, S. Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  33. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Medvedev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parkhomenko, V., Gayda, T., Medvedev, M. (2023). Intelligent System for Countering Groups of Robots Based on Reinforcement Learning Technologies. In: Ronzhin, A., Pshikhopov, V. (eds) Frontiers in Robotics and Electromechanics. Smart Innovation, Systems and Technologies, vol 329. Springer, Singapore. https://doi.org/10.1007/978-981-19-7685-8_9

Download citation

Publish with us

Policies and ethics