Skip to main content

An Ensemble Model for Gait Classification in Children and Adolescent with Cerebral Palsy: A Low-Cost Approach

  • Conference paper
  • First Online:
Soft Computing for Problem Solving

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 547))

  • 404 Accesses

Abstract

A fast and precise automatic gait diagnostic system is an urgent need for real-time clinical gait assessment. Existing machine intelligence-based systems to detect cerebral palsy gait have often ignored the crucial issue of performance and computation speed trade-off. This study, in a low-cost experimental setup, proposes an ensemble model by combining fast and deep neural networks. The proposed system demonstrates a competing result with an overall \({\approx }82\%\) of detection accuracy (sensitivity: \({\approx }78\%\), specificity: \({\approx }84\%\), and F1-score: \({\approx }83\%\)). Although the improvement in detection performance is marginal, the computation speed increased remarkably from state of the art. From the perspective of computation time and performance trade-off, the proposed model demonstrated to be competing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alharbi A (2020) A genetic-elm neural network computational method for diagnosis of the Parkinson disease gait dataset. Int J Comput Math 97(5):1087–1099

    Article  MathSciNet  MATH  Google Scholar 

  2. Bei S, Zhen Z, Xing Z, Taocheng L, Qin L (2018) Movement disorder detection via adaptively fused gait analysis based on Kinect sensors. IEEE Sens J 18(17):7305–7314

    Article  Google Scholar 

  3. Camps J, Sama A, Martin M, Rodriguez-Martin D, Perez-Lopez C, Arostegui JMM, Cabestany J, Catala A, Alcaine S, Mestre B et al (2018) Deep learning for freezing of gait detection in Parkinson’s disease patients in their homes using a waist-worn inertial measurement unit. Knowl-Based Syst 139:119–131

    Article  Google Scholar 

  4. Chakraborty S, Thomas N, Nandy A (2020) Gait abnormality detection in people with cerebral palsy using an uncertainty-based state-space model. In: International conference on computational science. Springer, pp 536–549

    Google Scholar 

  5. Cui C, Bian G-B, Hou Z-G, Zhao J, Su G, Zhou H, Peng L, Wang W (2018) Simultaneous recognition and assessment of post-stroke hemiparetic gait by fusing kinematic, kinetic, and electrophysiological data. IEEE Trans Neural Syst Rehabil Eng 26(4):856–864

    Article  Google Scholar 

  6. De Laet T, Papageorgiou E, Nieuwenhuys A, Desloovere K (2017) Does expert knowledge improve automatic probabilistic classification of gait joint motion patterns in children with cerebral palsy? PloS one 12(6):e0178378

    Article  Google Scholar 

  7. Dobson F, Morris ME, Baker R, Graham HK (2007) Gait classification in children with cerebral palsy: a systematic review. Gait Posture 25(1):140–152

    Article  Google Scholar 

  8. Dolatabadi E, Taati B, Mihailidis A (2017) An automated classification of pathological gait using unobtrusive sensing technology. IEEE Trans Neural Syst Rehabil Eng 25(12):2336–2346

    Article  Google Scholar 

  9. Ferrari A, Bergamini L, Guerzoni G, Calderara S, Bicocchi N, Vitetta G, Borghi C, Neviani R, Ferrari A (2019) Gait-based diplegia classification using lsmt networks. J Healthcare Eng

    Google Scholar 

  10. Gautam R, Sharma M (2020) Prevalence and diagnosis of neurological disorders using different deep learning techniques: a meta-analysis. J Med Syst 44(2):49

    Article  Google Scholar 

  11. Geerse DJ, Coolen BH, Roerdink M (2015) Kinematic validation of a multi-Kinect v2 instrumented 10-meter walkway for quantitative gait assessments. PloS one 10(10):e0139913

    Article  Google Scholar 

  12. Halilaj E, Rajagopal A, Fiterau M, Hicks JL, Hastie TJ, Delp SL (2018) Machine learning in human movement biomechanics: best practices, common pitfalls, and new opportunities. J Biomech 81:1–11

    Article  Google Scholar 

  13. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Article  Google Scholar 

  14. Huang G, Huang G-B, Song S, You K (2015) Trends in extreme learning machines: a review. Neural Netw 61:32–48

    Article  MATH  Google Scholar 

  15. Kamruzzaman J, Begg RK (2006) Support vector machines and other pattern recognition approaches to the diagnosis of cerebral palsy gait. IEEE Trans Biomed Eng 53(12):2479–2490

    Article  Google Scholar 

  16. Khokhlova M, Migniot C, Morozov A, Sushkova O, Dipanda A (2019) Normal and pathological gait classification lstm model. Artif Intell Med 94:54–66

    Article  Google Scholar 

  17. Müller B, Ilg W, Giese MA, Ludolph N (2017) Validation of enhanced Kinect sensor based motion capturing for gait assessment. PloS one 12(4):e0175813

    Article  Google Scholar 

  18. Nieuwenhuys A, Õunpuu S, Van Campenhout A, Theologis T, De Cat J, Stout J, Molenaers G, De Laet T, Desloovere K (2016) Identification of joint patterns during gait in children with cerebral palsy: a Delphi consensus study. Dev Med Child Neurol 58(3):306–313

    Article  Google Scholar 

  19. Papageorgiou E, Nieuwenhuys A, Vandekerckhove I, Van Campenhout A, Ortibus E, Desloovere K (2019) Systematic review on gait classifications in children with cerebral palsy: an update. Gait Posture 69:209–223

    Article  Google Scholar 

  20. Quisel T, Foschini L, Signorini A, Kale DC (2017) Collecting and analyzing millions of mhealth data streams. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp 1971–1980

    Google Scholar 

  21. Richards CL, Malouin F (2013) Cerebral palsy: definition, assessment and rehabilitation. In: Handbook of clinical neurology, vol 111. Elsevier, pp 183–195

    Google Scholar 

  22. Stavsky M, Mor O, Mastrolia SA, Greenbaum S, Than NG, Erez O (2017) Cerebral palsy-trends in epidemiology and recent development in prenatal mechanisms of disease, treatment, and prevention. Frontiers in pediatrics 5:21

    Article  Google Scholar 

  23. Van Gestel L, De Laet T, Di Lello E, Bruyninckx H, Molenaers G, Van Campenhout A, Aertbeliën E, Schwartz M, Wambacq H, De Cock P et al (2011) Probabilistic gait classification in children with cerebral palsy: a Bayesian approach. Res Dev Disabil 32(6):2542–2552

    Article  Google Scholar 

  24. You Z-H, Lei Y-K, Zhu L, Xia J, Wang B (2013) Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis. In: BMC Bioinformatics, vol 14. Springer, p S10

    Google Scholar 

  25. Yu W, Li X, Gonzalez J (2019) Fast training of deep lstm networks with guaranteed stability for nonlinear system modeling. In: International symposium on neural networks, vol 422. Springer, pp 3–10

    Google Scholar 

  26. Zeni J Jr, Richards J, Higginson J (2008) Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait and posture 27(4):710–714

    Article  Google Scholar 

  27. Zhang Y, Ma Y (2019) Application of supervised machine learning algorithms in the classification of sagittal gait patterns of cerebral palsy children with spastic diplegia. Comput Biol Med 106:33–39

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saikat Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chakraborty, S., Sambhavi, S., Panda, P., Nandy, A. (2023). An Ensemble Model for Gait Classification in Children and Adolescent with Cerebral Palsy: A Low-Cost Approach. In: Thakur, M., Agnihotri, S., Rajpurohit, B.S., Pant, M., Deep, K., Nagar, A.K. (eds) Soft Computing for Problem Solving. Lecture Notes in Networks and Systems, vol 547. Springer, Singapore. https://doi.org/10.1007/978-981-19-6525-8_7

Download citation

Publish with us

Policies and ethics