Skip to main content

Performance Analysis of Reversible Full Adders in Noisy Intermediate Scale Quantum (NISQ) Devices

  • Conference paper
  • First Online:
Human-Centric Smart Computing

Abstract

Quantum computation harnesses the power of quantum physics to create new and disruptive capabilities. A high level of quantum readiness to explore the novel application areas of the quantum paradigm is essential for a significant impact. A more resilient foundation of quantum cryptography-based emerging computation starts with investigating the performance analysis of reversible full adder. In this work, reversible equivalents of reversible full adder are designed and simulated by utilising elementary quantum gates like NOT, CNOT, and Toffoli gate. The simulation outcomes are then compared with the real backend results obtained from the IBM quantum experience, and the superior design with maximum percentage outcomes is reported. Both the ideal and noisy conditions are considered for experimental setups. The mitigation results of measurement error are also examined for the designs of reversible adders, and the improvements are summarised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Saeed, S.M., Wille, R., Karri, R.: Locking the design of building blocks for quantum circuits. ACM Trans. Embed. Comput. Syst. 18(5s), 60:1–60:15 (2019). https://doi.org/10.1145/3358184

  2. Ding. Y., Wu. X.C., Holmes. A., et al.: SQUARE: strategic quantum ancilla reuse for modular quantum programs via cost-effective uncomputation. In: 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), pp. 570–583 (2020). https://doi.org/10.1109/ISCA45697.2020.00054

  3. Li, G., Ding, Y., Xie, Y.:Tackling the qubit mapping problem for NISQ-era quantum devices. In: Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 1001–1014 (2019). https://doi.org/10.1145/3297858.3304023

  4. DiVincenzo, D.P.: The physical implementation of quantum computation. Fortschritte der Phys Phys. 48(9–11), 771–783 (2000). https://doi.org/10.1002/1521-3978(200009)48:9/11%3c771::AID-PROP771%3e3.0.CO;2-E

    Article  MATH  Google Scholar 

  5. Schomerus, H., Quantum information processing—Lecture Notes

    Google Scholar 

  6. Shaik, E.H., Rangaswamy, N.: Implementation of quantum gates based logic circuits using IBM qiskit. In: Proceedings of the 2020 International Conference on Computing, Communication and Security, ICCCS 2020, pp. 1–6 (2020). https://doi.org/10.1109/ICCCS49678.2020.9277010

  7. Abhijith, J., Adedoyin, A., Ambrosiano, J., et al.: Quantum algorithm implementations for beginners

    Google Scholar 

  8. Mukherjee, C., Panda, S., Mukhopadhyay, A.K., Maji, B.: Utilization of LTEx feynman gate in designing the QCA based reversible binary to gray and gray to binary code converters. Micro Nanosyst. 12(3) (2020). https://doi.org/10.2174/1876402912666200127162526

  9. IBM Q team. Qiskit Python SDK

    Google Scholar 

  10. Sjöqvist, E.: A new phase in quantum computation. Physics (College Park Md). 1 (2008). https://doi.org/10.1103/physics.1.35

  11. Nielson, M.A., Chuaang, I.L.: Quantum computation and quantum information. Cambridge University Press, First (2020)

    Google Scholar 

  12. Zulehner, A., Wille, R.: Simulation and design of quantum circuits. In: Reversible Computation: Extending Horizons of Computing. RC 2020, pp. 60–82. Springer International Publishing (2020). https://doi.org/10.1007/978-3-030-47361-7

  13. Ekert, A., Hayden, P.M., Inamori, H.: In: Kaiser, R., Westbrook, C., David, F. Coherent Atomic Matter Waves (2007). https://doi.org/10.1007/3-540-45338-5_10

  14. Orts, F., Ortega, G., Combarro, E.F., Garzón, E.M.: A review on reversible quantum adders. J. Netw. Comput. Appl. 170 (2020). https://doi.org/10.1016/j.jnca.2020.102810

  15. Abdessaied, N., Drechsler, R.: Reversible and quantum circuits. Springer International Publishing (2016)

    Google Scholar 

  16. Abellán, D., Valdivia, A., Barrio, A.A.D., Botella, G., Carrascal, G.: Simulating and executing circuits employing the quantum computing paradigm. In: 2019 Society for Modeling and Simulation International (SCS) (2019)

    Google Scholar 

  17. Koch, D., Patel, S., Wessing, L., Alsing, P.M.: Fundamentals in quantum algorithms: a tutorial series using qiskit continued. arXiv Quantum Phys. Published online 2020:1–170. http://arxiv.org/abs/2008.10647

  18. Ravivarma, G., Gavaskar, K., Kavitha, N.S.: Design and simulation of quantum adder using IBM quantum experience. Int J Sci Technol Res. 9(3), 1629–1632 (2020)

    Google Scholar 

  19. Li, H., Fan, H., Liang, J.: Quantum most-significant digit-first addition. In: IEEE International Green and Sustainable Computing Conference, pp. 1–8 (2021)

    Google Scholar 

  20. Jones, A.H., Khan, Z.: Reducing error in quantum computing with improved circuit design methods. J. Res. Prog. 4, 49–62 (2021)

    Google Scholar 

  21. Giraldo-Quintero, A., Sierra-Sosa, D., Lalinde-Pulido, J.G.: Qiskit n-Bitstring quantum half-adder and half-subtractor. In: 2020 IEEE international symposium on signal processing and information technology (ISSPIT) (2021). https://doi.org/10.1109/ISSPIT51521.2020.9408852

  22. Briegel, H.J., Browne, D.E., Dür, W., Raussendorf, R., Van Den Nest, M.: Measurement-based quantum computation. Nat. Phys. 5(1), 19–36 (2009). https://doi.org/10.1038/nphys1157

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayak Pramanik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kundu, J. et al. (2023). Performance Analysis of Reversible Full Adders in Noisy Intermediate Scale Quantum (NISQ) Devices. In: Bhattacharyya, S., Banerjee, J.S., Köppen, M. (eds) Human-Centric Smart Computing. Smart Innovation, Systems and Technologies, vol 316. Springer, Singapore. https://doi.org/10.1007/978-981-19-5403-0_6

Download citation

Publish with us

Policies and ethics