Skip to main content

Chi-Square Top-K Based Incremental Feature Selection Model for BigData Analytics

  • Conference paper
  • First Online:
Proceedings of Emerging Trends and Technologies on Intelligent Systems

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1414))

  • 273 Accesses

Abstract

The exponential rise in advanced software computing, internet technologies, and humongous data has given rise to a new paradigm called BigData, which requires an allied computing environment to ensure 4Vs aspects, often characterized as varieties, volume, velocity, and veracity. In sync with these demands, most of the classical commutating models fail, especially due to large unstructured features of gigantically huge volume. To alleviate this problem, feature selection can be a viable solution; provided it guarantees minimum features with optimal accuracy. In this reference, the proposed work contributed a first of its kind solution which could ensure minimum features while ensuring expected higher accuracy to meet 4V demands. To achieve it, in this paper, a robust Chi-Squared Select-K-Best Incremental Feature Selection (CS-SKB-IFS) model is developed that achieved a minimum set of features yielding the expected accuracy. Subsequently, over the selected features, the CS-SKB-IFS model is used for further classification using the Extra Tree classifier. Thus, the strategic amalgamation of the CS-SKB-IFS model achieved the accuracy of (91.02%), F-Measure (91.20%), and AUC (83.06%) than the other state-of-art methods. In addition to the statistical performance, CS-SKB-IFS exhibited significantly smaller computational time (1.01 s) than the state-of-art method (6.74 s).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chardonnens, T. (2013). Big data analytics on high velocity streams. Journal of Software Engineering Group, University of Fribourg, 50, 1–96.

    Google Scholar 

  2. Alshawish, R. A., Alfagih, S. A., & Musbah, M. S. (2016). Big data applications in smart cities. In IEEE International Conference on Engineering and Management Information Systems (pp. 1–7). IEEE.

    Google Scholar 

  3. Zhang, X., Mei, C. L., Chen, D. G., Yang, Y. Y., & Li, J. H. (2019). Active incremental feature selection using a fuzzy rough set based information entropy. IEEE Transactions on Fuzzy Systems, 28(5), 901–915.

    Article  Google Scholar 

  4. Wang, C. Z., Huang, Y., Shao, M. W., Hu, Q. H., & Chen, D. G. (2019). Feature selection based on neighborhood self-information. IEEE Transactions on Cybernetics, 50(9), 4031–4042.

    Article  Google Scholar 

  5. Saeys, Y., Inza, I., & Larra ñaga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, Oxford University Press, 23(19), 2507–2517.

    Google Scholar 

  6. Qian, W. B., Shu, W. H., & Zhang, C. S. (2016). Feature selection from the perspective of knowledge granulation in dynamic set-valued information system. Journal of Information Science and Engineering, 32(3), 783–798.

    MathSciNet  Google Scholar 

  7. Jing, Y. G., Li, T. R., Huang, J. F., & Zhang, Y. Y. (2016). An incremental attribute reduction approach based on knowledge granularity under the attribute generalization. International Journal of Approximate Reasoning, 76, 80–95.

    Article  MATH  MathSciNet  Google Scholar 

  8. Javidi M. M., & Eskandari, S. (2018). Streamwise feature selection: A rough set method. International Journal of Machine Learning and Cybernetics, Elsevier, 9(4), 667–676

    Google Scholar 

  9. Liu, J. H., Lin, Y. J., Li, Y. W., Weng, W., & Wu, S, X. (2018). Online multi-label streaming feature selection based on neighborhood rough set. Journal of Pattern Recognition, 84, 273–287.

    Google Scholar 

  10. Zhou, P., Hu, X. G., Li, P. P., & Wu, X. D. (2017). Online feature selection for high dimensional class imbalanced data. Journal of Knowledge Based Systems, 136, 187–199.

    Article  Google Scholar 

  11. Jing, Y. G., Li, T. R., Huang, J. F., Chen, H. M., & Horng, S. J. (2017). A group incremental reduction algorithm with varying data values. International Journal of Intelligent Systems, 32(9), 900–925.

    Article  Google Scholar 

  12. Chen, D. G., Yang, Y. Y., & Dong, Z. (2016). An incremental algorithm for attribute reduction with variable precision rough sets. Journal of Applied Soft Computing, 45, 129–149.

    Article  Google Scholar 

  13. Yang, Y. Y., Chen, D. G., & Wang, H. (2016). Active sample selection based incremental algorithm for attribute reduction with rough sets. IEEE Transactions on Fuzzy Systems, 25(4), 825–838.

    Article  Google Scholar 

  14. Wang, F., Liang, J. Y., & Dang, C. Y. (2013). Attribute reduction for dynamic data sets. Journal of Applied Soft Computing, 13(1), 676–689.

    Article  Google Scholar 

  15. https://www.openml.org/search

  16. Bahassine, S., Madani, A., Al-Serem, M., & Kissi, M. (2020). Feature selection using an improved chi-square for Arabic text classification. Journal of King Saud University Computer and Information Sciences, 32(2), 225–231.

    Article  Google Scholar 

  17. El-Hasnony, I. M., Barakat, S. I., Elhoseny, M., & Mostafa, R. R. (2020). Improved feature selection model for big data analytics. IEEE Transactions on Knowledge and Data Engineering, 8, 66989–67004.

    Google Scholar 

  18. Kong, L., Qu, W., Yu, J., Zuo, H., Chen, G., Xiong, F., et al. (2019). Distributed feature selection for big data using fuzzy rough sets. IEEE Transactions on Fuzzy Systems, 28(5), 846–857.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash Kamble .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kamble, S., Arunalatha, J.S., Venkataravana Nayak, K., Venugopal, K.R. (2023). Chi-Square Top-K Based Incremental Feature Selection Model for BigData Analytics. In: Noor, A., Saroha, K., Pricop, E., Sen, A., Trivedi, G. (eds) Proceedings of Emerging Trends and Technologies on Intelligent Systems. Advances in Intelligent Systems and Computing, vol 1414. Springer, Singapore. https://doi.org/10.1007/978-981-19-4182-5_11

Download citation

Publish with us

Policies and ethics