Skip to main content

Deep Learning Approach for Pedestrian Detection, Tracking, and Suspicious Activity Recognition in Academic Environment

  • Conference paper
  • First Online:
Intelligent Computing and Applications

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 315))

Abstract

Pedestrian detection, tracking, and suspicious activity recognition have grown increasingly significant in computer vision applications in recent years as security threats have increased. Continuous monitoring of private and public areas in high-density areas is very difficult, so active video surveillance that can track pedestrian behavior in real time is required. We present an innovative and robust deep learning system as well as a unique pedestrian dataset that includes student behavior like as test cheating, laboratory equipment theft, student disputes, and danger situations in institutions. It is the first of its kind to provide pedestrians with a unified and stable ID annotation. Again, we also presented a comparative analysis of result achieved by the recent deep learning approach of pedestrian detection, tracking, and suspicious activity recognition methods on a recent benchmark dataset. Our investigation will provide new research directions in vision-based surveillance for practitioners and research scholars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, M., Jahangir, M., & Afzal, H. (2015). Using crowd-source based features from social media and conventional features to predict the movies popularity. In IEEE International Conference on Smart Cities, Social Communication and Sustained Communication, China (pp. 273–278).

    Google Scholar 

  2. Bergmann, P., Meinhardt, T., & Taixe, L. (2019). Tracking without bells and whistles. In IEEE ICCV, Seoul, Korea (pp. 1–16).

    Google Scholar 

  3. Dollar, P., Wojek, C., Schiele, B., & Perona, P. (2012). Pedestrian detection: An evaluation of the state of the art. IEEE TPAMI, 34(4), 743–761.

    Article  Google Scholar 

  4. Samsi, S., Weiss, M. L., Bestor, D., Li, D., Jones, M., Reuther, A., Edelman, D., Arcand, W., & Byun, C. (2021). The MIT supercloud dataset. Cornell Journal of Distributed, Parallel, and Cluster Computing, 2108(02037).

    Google Scholar 

  5. Silberstein, S., Levi, D., Kogan, V., & Gazit, R. (2014). Vision-based pedestrian detection for rear-view cameras. In IEEE Intelligent Vehicles Symposium Proceedings, Dearborn, MI, USA (pp. 853–860).

    Google Scholar 

  6. Alom, M. Z., & Taha, T. M. (2017). Robust multi-view pedestrian tracking using neural networks. In IEEE National Aerospace and Electronics Conference (NAECON), Dayton, OH, USA (pp. 17–22).

    Google Scholar 

  7. Zhang, X., Park, S., Beeler, T., Bradley, D., Tang, S., & Hilliges, O. (2020). ETH-XGaze: A large scale dataset for gaze estimation under extreme head pose and gaze variation. In ECCV. Lecture Notes in Computer Science (Vol. 12350). Springer.

    Google Scholar 

  8. Wojek, C., Walk, S., & Schiele, B. (2009). IEEE CVPR, Miami, Florida, USA.

    Google Scholar 

  9. Nguyen, T., Kim, S., & Na, I. (2013). Fast pedestrian detection using histogram of oriented gradients and principal components analysis. International Journal of Contents.

    Google Scholar 

  10. Everingham, M., Van Gool, L., & Williams, C. K. I. (2010). The Pascal visual object classes (VOC) challenge. International Journal of Computer Vision, 88, 303–338.

    Article  Google Scholar 

  11. Lin, T. Y., et al. (2014). Microsoft COCO: Common objects in context. In ECCV. Lecture Notes in Computer Science (Vol. 8693, pp. 740–755). Springer.

    Google Scholar 

  12. Nicolai, W., Bewley, A., & Dietrich, P. (2017). Simple online and real-time tracking with a deep association metric. In IEEE ICIP (pp. 3645–3649).

    Google Scholar 

  13. Dai, J., Li, Y., He, K., Sun, J., & FCN, R. (2016). Object detection via region-based fully convolutional networks. In CVPR (pp. 1–11).

    Google Scholar 

  14. Hajari, K., Gawande, U., & Golhar, Y. (2021). Deep learning approach to pedestrian detection: An evaluation of the state of the art. In Computing technologies and applications paving path towards society 5.0 (1st ed.,). Routledge and CRC Press, Taylor & Francis Group. ISBN:9780367763701.

    Google Scholar 

  15. Everingham, M., Eslami, S., Gool, V., Williams, C., & Winn, J. (2015). The PASCAL VOC challenge: A retrospective. IJCV, 111, 98–136.

    Google Scholar 

  16. Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In IEEE Computer Society Conference on CVPR, San Diego, CA, USA (pp. 886–893).

    Google Scholar 

  17. Kaiming, H., Georgia, G., Dollar, P., & Girshick, R. (2020). Mask R-CNN. IEEE TPAMI, 42(2), 386–397.

    Article  Google Scholar 

  18. Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In Proceedings of the IEEE Computer Society Conference on CVPR, HI, USA (pp. I-I).

    Google Scholar 

  19. Felzenszwalb, P., Girshick, R., McAllester, D., & Ramanan, D. (2010). Object detection with discriminatively trained part-based models. TPAMI, 32(9), 1627–1645.

    Article  Google Scholar 

  20. He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017). Mask R-CNN. In IEEE International Conference on Computer Vision, Venice, Italy (pp. 2980–2988).

    Google Scholar 

  21. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., et al. (2016). SSD: Single shot multibox detector. In European Conference on Computer Vision (pp. 21–37). Springer.

    Google Scholar 

  22. Redmon, J., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In IEEE Conference on CVPR, Las Vegas, NV, USA (pp. 779–788).

    Google Scholar 

  23. Bochinski, E., Senst, T., & Sikora, T. (2018). Extending IOU based multi-object tracking by visual information. In IEEE International Conference on Advanced Video and Signal Based Surveillance, Auckland, New Zealand.

    Google Scholar 

  24. Barnardin, K., & Stiefelhagen, R. (2008). Evaluating multiple object tracking performance: The CLEAR MOT metrics. EURASIP Journal on Image and Video Processing 246309.

    Google Scholar 

  25. Kratz, L., & Nishino, K. (2012). Tracking pedestrians using local spatio-temporal motion patterns in extremely crowded scenes. IEEE TPAMI, 34(5), 987–1002.

    Article  Google Scholar 

  26. Wang, S., & Miao, Z. (2010). Anomaly detection in crowd scene. In 10th IEEE International Conference on Signal Processing, Beijing, China (pp. 1220–1223).

    Google Scholar 

  27. Wang, S., & Miao, Z. (2010). Anomaly detection in crowd scene using historical information. In IEEE International Symposium on Intelligent Signal Processing and Communication Systems, Chengdu, China (pp. 1–4).

    Google Scholar 

  28. Muhammad, G., Hossain, M., & Kumar, N. (2021). EEG-based pathology detection for home health monitoring. IEEE Journal on Selected Areas in Communications, 39(2), 603–610.

    Article  Google Scholar 

  29. Muhammad, G., Alhamid, M. F., & Long, X. (2019). Computing and processing on the edge: Smart pathology detection for connected healthcare. IEEE Network, 33, 44–49.

    Article  Google Scholar 

  30. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial pyramid pooling in deep convolutional networks for visual recognition. TPAMI, 37(9), 1904–1916.

    Article  Google Scholar 

  31. Muhammad, N., Hussain, M., Muhammad, G., & Bebis, G. (2011). Copy-move forgery detection using dyadic wavelet transform. In Eighth International Conference on CGIV, Singapore (pp. 103–108).

    Google Scholar 

  32. Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, Columbus, OH, USA (pp. 580–587).

    Google Scholar 

  33. Girshick, R. (2015). Fast R-CNN. In IEEE International Conference on CV, Santiago, Chile (pp. 1440–1448).

    Google Scholar 

  34. Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE TPAMI, 39(6), 1137–1149.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Hajari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hajari, K., Gawande, U., Golhar, Y. (2023). Deep Learning Approach for Pedestrian Detection, Tracking, and Suspicious Activity Recognition in Academic Environment. In: Rao, B.N.K., Balasubramanian, R., Wang, SJ., Nayak, R. (eds) Intelligent Computing and Applications. Smart Innovation, Systems and Technologies, vol 315. Springer, Singapore. https://doi.org/10.1007/978-981-19-4162-7_4

Download citation

Publish with us

Policies and ethics