Skip to main content

The State of the Art Techniques in Recommendation Systems

  • Conference paper
  • First Online:
Applied Computational Technologies (ICCET 2022)

Abstract

The fast increment in the measure of information over the internet has made it hard to discover entities that might hold any importance with users. Thus, information has expanded at an unpredicted rate, and the information over-burden issue has turned out to be progressively severe for online users. One answer for this information over-burden issue is the utilization of Recommendation Systems (RSs). Recommendation System is a capable technology that tries to anticipate users’ interests by providing them with the information or services they require without directly enquiring. Recommendation systems are used by most social media services and e-commerce applications to improve user convenience. RS helps to explore options and decrease information overload for online users. This paper presents a complete survey of recommendation systems. This paper forms a platform for researchers in the recommendation system domain and provides collective discussions over various techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hanani, U., Shapira, B., Shoval, P.: Information Filtering: Overview of Issues. Kulwar Academic Publishers, Research and Systems. User modelling and User-Adpted Interaction (2001)

    MATH  Google Scholar 

  2. User Modeling via Stereotypes: RICH E. Cogn. Sci. 3, 329–354 (1979)

    Article  Google Scholar 

  3. Miller, B.: GroupLens: An Open Architecture for Collaborative Filtering (1995)

    Google Scholar 

  4. Shardanand, U., Maes, P.: Social information filtering: algorithms for automating word of mouth. In: CHI 1995 Proceedings ACM (1995)

    Google Scholar 

  5. Balabanovic, M., Shoham, Y.: Content-based collaborative recommendation. Commun. ACM 40, 66–72 (1997)

    Article  Google Scholar 

  6. Basu, C., Hirsh, H., Cohen, W.: Recommendation as classification: using social and content-based information. In: Recommendation. American Association for Artificial Intelligence, pp. 11–15 (1998)

    Google Scholar 

  7. Pennock, D., Horvitz, E., Lawrence, S., Lee Giles, C.: Collaborative filtering by personality diagnosis: a hybrid memory- and model-based approach. In: Uncertainty in Artificial Intelligence Proceedings (2000)

    Google Scholar 

  8. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Analysis of recommendation algorithms for ecommerce. In: EC2000, ACM (2000)

    Google Scholar 

  9. Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. In: ACM Transactions on Information Systems, vol. 22, no. 1, p. 143–177, January 2004

    Google Scholar 

  10. Schein, A., Popescul, A., Ungar, L., Pennock, D.: Methods and metrics for cold-start recommendations. In: ACM (2002)

    Google Scholar 

  11. Mobasher, B., Jin, X., Zhou, Y.: Semantically Enhanced Collaborative Filtering on the Web. In: Berendt, B., Hotho, A., Mladenič, D., van Someren, M., Spiliopoulou, M., Stumme, G. (eds.) EWMF 2003. LNCS (LNAI), vol. 3209, pp. 57–76. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30123-3_4

    Chapter  Google Scholar 

  12. Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommendation systems using a multidimensional approach. ACM Trans. Inf. Syst. 23(1), 103–145 (2005)

    Article  Google Scholar 

  13. Lathia, N., Hailes, S., Capra, L.: Trust-Based Collaborative Filtering. In: Karabulut, Y., Mitchell, J., Herrmann, P., Jensen, C.D. (eds.) IFIPTM 2008. ITIFIP, vol. 263, pp. 119–134. Springer, Boston, MA (2008). https://doi.org/10.1007/978-0-387-09428-1_8

    Chapter  Google Scholar 

  14. Koren, Y.: Collaborative filtering with temporal dynamics. In: KDD 2009, Paris, France, ACM (2009)

    Google Scholar 

  15. Ouyang, Y., Zhang, J., Xie, W., Rong, W., Xiong, Z.: Implicit and explicit trust in collaborative filtering. In: Lehner, F., Fteimi, N. (eds.) KSEM 2016. LNCS (LNAI), vol. 9983, pp. 489–500. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47650-6_39

    Chapter  Google Scholar 

  16. Herlocker, J.L., Konstan, J.A., Brochers, A., Riedl, J.: An algorithmic framework for performing collaborative filtering. In: ACM-SIGIR Conference (1999)

    Google Scholar 

  17. Li, Q., Man Kim, B.: An approach for combining content-based and collaborative filters. In: Proceedings of IRAL2003 (2003)

    Google Scholar 

  18. Gohari, F.S., Haghighi, H., Aliee, F.S.: A semantic-enhanced trust based recommender system using ant colony optimization. Appl. Intell. 46(2), 328–364 (2016). https://doi.org/10.1007/s10489-016-0830-y

    Article  Google Scholar 

  19. Deng, S., Huang, L., Xu, G., Wu, X. Wu, Z.: On deep learning for trust-aware recommendations in social networks. In: 2016 IEEE (2016)

    Google Scholar 

  20. Fazeli, S., Loni, B., Bellogin, A., Drachsler, H., Sloep, P.: Implicit vs. explicit trust in social matrix factorization. In: RecSys 2014, ACM, San Jose or vicinity, CA, USA, October 2014

    Google Scholar 

  21. Fang, H., Guo, G., Zhang, J.: Multi-faceted trust and distrust prediction for recommendation systems. Decis. Support Syst. 71, 37–47 (2015)

    Article  Google Scholar 

  22. Zheng, L., Zhu, F., Huang, S., Xie, J.: Context neighbor recommendation: integrating contexts via neighbors for recommendations. Inf. Sci. 414, 1–18 (2017)

    Article  Google Scholar 

  23. Li, J., Chen, C., Chen, H., Tong, C.: Towards context-aware social recommendation via individual trust. Knowl. Syst. 127, 58–66 (2017)

    Article  Google Scholar 

  24. Wu, S., Liu, Q., Wang, L., Tan, T.: Contextual Operation for Recommendation Systems. In: IEEE Transactions on Knowledge and Data Engineering, AUGUST 2016

    Google Scholar 

  25. Inzunza, S., Juárez-Ramírez, R., Jiménez, S. . User modeling framework for context-aware recommender systems. In: Rocha, Á., Correia, A., Adeli, H., Reis, L., Costanzo, S. (eds) Recent Advances in Information Systems and Technologies. WorldCIST 2017. Advances in Intelligent Systems and Computing, vol. 569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56535-4_88

  26. Zheng, C., Haihong, E., Song, M., Song, J.: CMPTF: Contextual Modeling Probabilistic Tensor Factorization for recommendation systems. Neurocomputing 20(5), 141–151 (2016)

    Article  Google Scholar 

  27. Liu Y., Shen Y., Li K.: Recommendation in a changing world: exploiting temporal dynamics in ratings and reviews. In: ACM Transactions on the Web, Vol. 12, No. 1, Article 3. Publication date: August 2017

    Google Scholar 

  28. Giammarino, D., Gurini, D.F., Micarelli, A., Sansonetti, G.: Social recommendation with time and sentiment analysis. ACM UMAP 2017, Bratislava, Slovakia (2017)

    Google Scholar 

  29. Rafailidis, D., Crestani, F.: Learning to rank with trust and distrust in recommendation systems. In: RecSys 2017, August 27–31, 2017, Como, Italy © 2017 ACM (2017)

    Google Scholar 

  30. Otunba, R., Rufai, R.A., Lin, J.: MPR: Multi-objective pairwise ranking. In: RecSys 2017, August 27–31, 2017, Como, Italy. © 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM (2017)

    Google Scholar 

  31. Wives, L.K., Becker, K.: MRR: an unsupervised algorithm to rank reviews by relevance. In: WI 2017, August 23–26, 2017, Leipzig, Germany © 2017 Association for Computing Machinery ACM (2017)

    Google Scholar 

  32. Jugovac, M., Jannach, D.: Interacting with recommendations—overview and research directions. In: ACM Transactions on Interactive Intelligent Systems, Vol. 7, No. 3, Article 10. Publication date: September 2017

    Google Scholar 

  33. Jallouli, M., Lajmi, S., Amous, I.: Designing Recommendation system: conceptual framework and practical implementation. Proc. Comput. Sci. 112(2017), 1701–1710 (2017)

    Article  Google Scholar 

  34. Valcarce, D., Parapar, J., Barreiro, A.: Combining Top-N recommendations with metasearch algorithms. In: SIGIR 2017, August 07–11, 2017, Shinjuku, Tokyo, Japan ACM ISBN ACM ISBN 978–1–4503–5022–8/17/08, 2017

    Google Scholar 

  35. Aggarwal, C.C.: An introduction to recommender systems. In: Recommender Systems. Springer, Cham (2016).https://doi.org/10.1007/978-3-319-29659-3_1

  36. Palumbo, E., Rizzo, G., Troncy, R.: entity2rec: Learning user-item relatedness from knowledge graphs for Top-N item recommendation. RecSys 2017, August 27–31, 2017, Como, Italy. © 2017 ACM (2017)

    Google Scholar 

  37. Hu, J., Li, P.: Decoupled Collaborative Ranking. WWW 2017, April 3–7, 2017, Perth, Australia. ACM 978–1–4503–4913–0/17/04 (2017)

    Google Scholar 

  38. Yagci, M., Aytekin, T., Gurgen, F.: On Parallelizing SGD for pairwise learning to rank in collaborative filtering recommendation systems. In: RecSys 2017, August 27–31, 2017, Como, Italy © 2017 ACM, 2017

    Google Scholar 

  39. Rafailidis, D., Nanopoulos, A.: Modeling the dynamics of user preferences in coupled tensor factorization. In: RecSys 2014, October 6–10, 2014, Foster City, Silicon Valley, CA, USA Copyright 2014 ACM, 2014

    Google Scholar 

  40. Cheng, P., Wang, S., Sun, J., Sun, J., Xiong, H.: Learning to recommend accurate and diverse items. In: WWW 2017, April 3–7, 2017, Perth, Australia. ACM 978–1–4503–4913–0/17/04., 2017

    Google Scholar 

  41. He, X., Zhang, H., Kan M.-Y. Chua, T.S.: Fast matrix factorization for online recommendation with implicit feedback. In: SIGIR 2016, July 17–21, 2016, Pisa, Italy ACM (2016)

    Google Scholar 

  42. Oliveira, S., Diniz, V., Lacerda, A., Pappa, G.L.: Evolutionary rank aggregation for recommendation systems. In: IEEE (2016)

    Google Scholar 

  43. Cunha, T., Soares, C., Carvalho, A.C.D.: Meta-learning for context-aware filtering: selection of tensor factorization algorithms. In: RecSys 2017, August 27–31, 2017, Como, Italy © 2017 ACM. (2017)

    Google Scholar 

  44. Beutel, A., Chi, E.H., Cheng, Z., Pham, H., Anderson, J.: Beyond globally optimal: focused learning for improved recommendations. In: WWW 2017, April 3–7, 2017, Perth, Australia ACM 978–1–4503–4913–0/17/04., 2017

    Google Scholar 

  45. Ning, Y., Shi, Y., Hong, L., Rangwala, H., Ramakrishnan, N.: A gradient-based adaptive learning framework for efficient personal recommendation. In: RecSys 2017, August 27–31, 2017, Como, Italy © 2017 ACM, 2017

    Google Scholar 

  46. Hsieh, C.K., Yang, L., Cui, Y., Lin, T.Y., Belongie, S., Estrin, D.: Collaborative Metric Learning. In: WWW 2017, April 3–7, 2017, Perth, Australia ACM 978–1–4503–4913–0/17/04 (2017)

    Google Scholar 

  47. Abdollahpouri, H., Burke, R., Mobasher, B.: Controlling Popularity Bias in Learning-to-Rank Recommendation (2017)

    Google Scholar 

  48. Lü, L., Medo, M., Yeung, C.H., Zhang, Y.C., Zhang Z.K., Zhou T.: Recommendation Systems. Elsevier 2012, MARCH 2012

    Google Scholar 

  49. Di Noia, T, Ostuni, V.C., Tomeo, P., Di Sciascio, E.: SPrank: Semantic path-based ranking for Top-N recommendations using linked open data. In: ACM Transactions on Intelligent Systems and Technology, Vol. 8, No. 1, Article 9, vol. 8, September 2016

    Google Scholar 

  50. Paudel B., Christoffel F., Newell C., Bernstein A.: Updatable, Accurate, diverse, and scalable recommendations for interactive applications. In: ACM Transactions on Interactive Intelligent Systems, Vol. 7, No. 1, Article 1, vol. 7, December 2016

    Google Scholar 

  51. Moody, J. Glass, D.H.: A novel classification framework for evaluating individual and aggregate diversity in Top-N recommendations. In: ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 3, Article 42, vol. 7, February 2016

    Google Scholar 

  52. Hu, L., Cao, L., Cao, J., Gu, Z., Xu, G., Wang, J.: Improving the quality of recommendations for users and items in the tail of distribution. ACM Transactions on Information Systems, Vol. 35, No. 3, Article 25, vol. 35, June 2017

    Google Scholar 

  53. Zhang S., Yao L., Sun A.: Deep learning based recommendation system: a survey and new perspectives. ACM J. Comput. Cult. Herit., Vol. 1, No. 1, Article 35. , vol. 1, July 2017

    Google Scholar 

  54. Feng, S., Cao, J., Wang, J., Qian, S.: Recommendations based on comprehensively exploiting the latent factors hidden in items' ratings and content. In: ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 35, vol. 11, March 2017

    Google Scholar 

  55. Fu, M., Qu, H., Yi, Z., Lu, L., Liu, Y.: A novel deep learning-based collaborative filtering model for recommendation system. IEEE Trans. Cyber. 49(3), 1084–1096 (2018)

    Article  Google Scholar 

  56. Lo, Y.-Y., Liao, W., Chang, C.-S., Lee, Y.-C.: Temporal matrix factorization for tracking concept drift in individual user preferences. IEEE Trans. Comput. Soc. Syst. 5(1), 156–168 (2018)

    Article  Google Scholar 

  57. Iftikhar, A.: An improved product recommendation method for collaborative filtering. IEEE Access 8, 123841–123857 (2020)

    Article  Google Scholar 

  58. Chen, J.: A Temporal Recommendation Mechanism Based on Signed Network of User Interest Changes. IEEE Syst. J. 14(1), 244–252 (2019)

    Article  Google Scholar 

  59. Zhang, J.: A Multi-trans matrix factorization model with improved time weight in temporal recommendation systems. IEEE Access 8, 2408–2416 (2020)

    Article  Google Scholar 

  60. Liao, X.: Ant Collaborative Filtering Addressing Sparsity and Temporal Effects. IEEE Access 8, 32783–32791 (2020)

    Article  Google Scholar 

  61. Dong, B.: Hybrid collaborative recommendation via dual-autoencoder. IEEE Access 8, 46030–46040 (2020)

    Article  Google Scholar 

  62. Zhang, Y.: Improvement of collaborative filtering recommendation algorithm based on intuitionistic fuzzy reasoning under missing data. IEEE Access 8, 51324–51332 (2020)

    Article  Google Scholar 

  63. Kumar, S.: Movie recommendation system using sentiment analysis from microblogging data. IEEE Trans. Comput. Soc. Syst. 7(4), 915–923 (2020)

    Article  Google Scholar 

  64. Li, H.: A novel time-aware hybrid recommendation scheme combining user feedback and collaborative filtering. Hindawi Mobile Inf. Syst. 15(4), 5301–5312 (2020)

    Google Scholar 

  65. Zhang, J.: Personalized real-time movie recommendation system: practical prototype and evaluation. Tsinghua Sci. Technol. 25(2), 180–191 (2020)

    Article  Google Scholar 

  66. Su, Z.: Rating prediction in recommendation systems based on user behavior probability and complex network modeling. IEEE Acces 9, 30739–30749 (2021)

    Article  Google Scholar 

  67. Himeur, Y., Alsalemi, A.: Elsevier 2021 A survey of recommendation systems for energy efficiency in buildings: Principles, challenges, and prospects. Inf. Fusion 72, 1–21 (2021)

    Article  Google Scholar 

  68. Mohamed, M.H.: Recommender Systems Challenges and Solutions Survey. In: 2019 International Conference on Innovative Trends in Computer Engineering (ITCE'2019), Aswan, Egypt, 2–4 February 2019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chetan Awati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Awati, C., Shirgave, S. (2022). The State of the Art Techniques in Recommendation Systems. In: Iyer, B., Crick, T., Peng, SL. (eds) Applied Computational Technologies. ICCET 2022. Smart Innovation, Systems and Technologies, vol 303. Springer, Singapore. https://doi.org/10.1007/978-981-19-2719-5_68

Download citation

Publish with us

Policies and ethics