Skip to main content

Performance Assessment for Heart-Disease Prediction Using Machine Learning Algorithms

  • Conference paper
  • First Online:
Applied Computational Technologies (ICCET 2022)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 303))

Included in the following conference series:

Abstract

Heart disease is the top severe reason for death in the world. However, the prediction of this disease is a censorious challenge in clinical data analysis. Various traditional and recent approaches have shown efficacy in portraying the disease prediction and diagnosis but have restricted performance due to insufficient data modeling. Therefore, the forecast of heart-related diseases needs and involves a more accurate solution. To assist the decision-making towards heart disease diagnosis, intelligent techniques such as machine learning (ML) may be helpful from the large quantity of data produced by the healthcare industry. In this work, we process and compute the accuracy of several standard ML algorithms, namely Decision Tree, K Nearest Neighbor, Logistic Regression, Naïve Bayes, Neural Network, Random Forest, Support Vector Machine, and XGBoost classifier for predicting heart disease for using a standard dataset for training and testing and finally, the performance will be assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. WHO. Cardiovascular Diseases Report by World Health Organization (2021). https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1

  2. Challa, S.K., Kumar, A., Semwal, V.B.: A multibranch CNN-BiLSTM model for human activity recognition using wearable sensor data. Vis. Comput. 0123456789 (2021). https://doi.org/10.1007/s00371-021-02283-3

  3. Dua, N., Singh, S.N., Semwal, V.B.: Multi-input CNN-GRU based human activity recognition using wearable sensors. Computing 103(7), 1461–1478 (2021). https://doi.org/10.1007/s00607-021-00928-8

    Article  Google Scholar 

  4. Dewangan, D.K., Sahu, S.P., Sairam, B., Agrawal, A.: VLDNet: vision-based lane region detection network for intelligent vehicle system using semantic segmentation. Computing 103(12), 2867–2892 (2021). https://doi.org/10.1007/s00607-021-00974-2

    Article  MathSciNet  Google Scholar 

  5. Singh, A., Bansal, A., Chauhan, N., Sahu, S.P., Dewangan, D.K.: Image generation using GAN and its classification using SVM and CNN. In: Proceedings of Emerging Trends and Technologies on Intelligent Systems. ETTIS 2021. Advances in Intelligent Systems and Computing, vol. 1371. Springer, Singapore (2021)

    Google Scholar 

  6. Ojha, A., Sahu, S.P., Dewangan, D.K.: Vehicle detection through instance segmentation using mask R-CNN for intelligent vehicle system. In: 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 954–959 (2021). https://doi.org/10.1109/ICICCS51141.2021.9432374

  7. Dewangan, D.K., Sahu, S.P.: Driving behaviour analysis of intelligent vehicle system for lane detection using vision-sensor. IEEE Sens. J. 21(5), 6367–6375 (2021). https://doi.org/10.1109/JSEN.2020.3037340

    Article  Google Scholar 

  8. Sahu, S.P., Dewangan, D.K., Agrawal, A., Sai Priyanka, T.: Traffic light cycle control using deep reinforcement technique. In: 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), pp. 697–702 (2021). https://doi.org/10.1109/ICAIS50930.2021.9395880

  9. Dewangan, D.K., Sahu, S.P.: Deep learning-based speed bump detection model for intelligent vehicle system using raspberry pi. IEEE Sens. J. 21(3), 3570–3578 (2021). https://doi.org/10.1109/JSEN.2020.3027097

    Article  Google Scholar 

  10. Dewangan, D.K., Sahu, S.P.: Predictive control strategy for driving of intelligent vehicle system against the parking slots. In: 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 10–13 (2021). https://doi.org/10.1109/ICICCS51141.2021.9432362

  11. Pandey, P., Dewangan, K.K., Dewangan, D.K.: Enhancing the quality of satellite images using fuzzy inference system. In: 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing, ICECDS 2017 (2018). https://doi.org/10.1109/ICECDS.2017.8390024

  12. Pandey, P., Dewangan, K.K., Dewangan, D.K.: Enhancing the quality of satellite images by preprocessing and contrast enhancement. Proceedings of the 2017 IEEE Intermnational Conference on Communication Signal Processing, ICCSP 2017, January 2018, pp. 56–60 (2018). https://doi.org/10.1109/ICCSP.2017.8286525

  13. Dewangan, D.K., Rathore, Y.: Image quality estimation of images using full reference and no reference method. Int. J. Adv. Res. Comput. Sci. 2(5), 323–326 (2011)

    Google Scholar 

  14. Sahu, S.P., Londhe, N.D., Verma, S.:Pulmonary nodule detection in CT images using optimal multilevel thresholds and rule-based filtering. IETE J. Res. 1–18 (2019). https://doi.org/10.1080/03772063.2019.1603084

  15. Waiker, D., Das Baghel, P., Varma, K.R., Sahu, S.P.: Effective semantic segmentation of lung X-ray images using U-Net architecture. In: Proceedings of the 4th International Conference on Computer Methodolgy Communication, ICCMC 2020, pp. 603–607 (2020). https://doi.org/10.1109/ICCMC48092.2020.ICCMC-000112

  16. Sahu, S.P., Londhe, N.D., Verma, S., Singh, B.K., Banchhor, S.K.: Improved pulmonary lung nodules risk stratification in computed tomography images by fusing shape and texture features in a machine-learning paradigm. JInt. J. Imaging Syst. Technol. 31(3), 1503–1518 (2021). https://doi.org/10.1002/ima.22539

    Article  Google Scholar 

  17. Barik, S., Mohanty, S., Rout, D., Mohanty, S., Patra, A.K., Mishra, A.K.: Heart disease prediction using machine learning techniques. In: Pradhan, G., Morris, S., Nayak, N. (eds.) Advances in Electrical Control and Signal Systems. LNEE, vol. 665, pp. 879–888. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-5262-5_67

    Chapter  Google Scholar 

  18. Shah, D., Patel, S., Bharti, S.K.: Heart disease prediction using machine learning techniques. In: Proceedings of the IEEE 2020 2nd International Conference Advanced Computer Communication Control Networking, ICACCCN 2020, vol. 1, no. 6, pp. 177–181 (2020). https://doi.org/10.1109/ICACCCN51052.2020.9362842

  19. Swain, D., Ballal, P., Dolase, V., Dash, B., Santhappan, J.: An efficient heart disease prediction system using machine learning. In: Swain, D., Pattnaik, P.K., Gupta, P.K. (eds.) Machine Learning and Information Processing. AISC, vol. 1101, pp. 39–50. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-1884-3_4

    Chapter  Google Scholar 

  20. Abdeldjouad, F.Z., Brahami, M., Matta, N.: A hybrid approach for heart disease diagnosis and prediction using machine learning techniques. In: Jmaiel, M., Mokhtari, M., Abdulrazak, B., Aloulou, H., Kallel, S. (eds.) ICOST 2020. LNCS, vol. 12157, pp. 299–306. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51517-1_26

    Chapter  Google Scholar 

  21. Lafta, R., Zhang, J., Tao, X., Li, Y., Diykh, M., Lin, J.-W.: A structural graph-coupled advanced machine learning ensemble model for disease risk prediction in a telehealthcare environment. In: Roy, S.S., Samui, P., Deo, R., Ntalampiras, S. (eds.) Big Data in Engineering Applications. SBD, vol. 44, pp. 363–384. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-8476-8_18

    Chapter  Google Scholar 

  22. Kumar, A., Gyawali, R., Agarwal, S.: Cardiovascular disease prediction using machine learning tools. In: Agarwal, S., Verma, S., Agrawal, D.P. (eds.) MISP 2019. AISC, vol. 1085, pp. 441–451. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-1366-4_35

    Chapter  Google Scholar 

  23. Sajeev, S., et al.: Deep learning to improve heart disease risk prediction. In: Liao, H., et al. (eds.) MLMECH/CVII-STENT -2019. LNCS, vol. 11794, pp. 96–103. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33327-0_12

    Chapter  Google Scholar 

  24. Bhuvaneeswari, R., Sudhakar, P., Narmadha, R.P.: Machine learning based optimal data classification model for heart disease prediction. In: Hemanth, D.J., Shakya, S., Baig, Z. (eds.) ICICI 2019. LNDECT, vol. 38, pp. 485–491. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-34080-3_55

    Chapter  Google Scholar 

  25. Kannan, R., Vasanthi, V.: Machine learning algorithms with ROC curve for predicting and diagnosing the heart disease. In: Soft Computing and Medical Bioinformatics. SAST, pp. 63–72. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0059-2_8

    Chapter  Google Scholar 

  26. Krstačič, G., Gamberger, D., Šmuc, T.: Coronary heart disease patient models based on inductive machine learning. In: Quaglini, S., Barahona, P., Andreassen, S. (eds.) AIME 2001. LNCS (LNAI), vol. 2101, pp. 113–116. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48229-6_15

    Chapter  Google Scholar 

  27. Singh, Y.K., Sinha, N., Singh, S.K.: Heart disease prediction system using random forest. In: Singh, M., Gupta, P.K., Tyagi, V., Sharma, A., Ören, T., Grosky, W. (eds.) ICACDS 2016. CCIS, vol. 721, pp. 613–623. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-5427-3_63

    Chapter  Google Scholar 

  28. Maji, S., Arora, S.: Decision tree algorithms for prediction of heart disease. In: Fong, S., Akashe, S., Mahalle, P.N. (eds.) Information and Communication Technology for Competitive Strategies. LNNS, vol. 40, pp. 447–454. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0586-3_45

    Chapter  Google Scholar 

  29. Janosi, A., Steinbrunn, W., Pfisterer, M., Detrano, R.: Heart Disease Data Set, UCI Machine Learning Repository. https://archive.ics.uci.edu/ml/datasets/Heart+Disease

  30. Dewangan, D.K., Sahu, S.P.: RCNet: road classification convolutional neural networks for intelligent vehicle system. Intel. Serv. Robot. 14(2), 199–214 (2021). https://doi.org/10.1007/s11370-020-00343-6

    Article  Google Scholar 

  31. Dewangan, D.K., Sahu, S.P.: PotNet: pothole detection for autonomous vehicle system using convolutional neural network. Electron. Lett. 57(2), 53–56 (2021). https://doi.org/10.1049/ell2.12062

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varsha Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, V., Arora, A. (2022). Performance Assessment for Heart-Disease Prediction Using Machine Learning Algorithms. In: Iyer, B., Crick, T., Peng, SL. (eds) Applied Computational Technologies. ICCET 2022. Smart Innovation, Systems and Technologies, vol 303. Springer, Singapore. https://doi.org/10.1007/978-981-19-2719-5_23

Download citation

Publish with us

Policies and ethics