Skip to main content

A Deep Convolutional Neural Network Based Approach to Classify and Detect Crack in Concrete Surface Using Xception

  • Conference paper
  • First Online:
Proceedings of International Conference on Fourth Industrial Revolution and Beyond 2021

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 437))

Abstract

Deep learning has become a widely practiced approach in research arenas related to civil infrastructures. Monitoring concrete structures is time-consuming, costly, unsafe, and laborious. Instead of manual inspection, the deep learning approach increases more possibility to automate this inspection process helping to mitigate future risk. This study introduces an automatic concrete surface crack detection and classification technique using a deep learning architecture, namely Xception to alleviate the risks due to deteriorating structure conditions. At first, the Xception model was trained and tested on a public dataset consisting of cracked and non-cracked images, and the model has shown superior accuracy in two-class classification. Afterward, the cracked sub-dataset was split into two classes–horizontally cracked and vertically cracked using a traditional computer vision approach to determine the inclination angle of a crack. The proposed deep learning model was trained on the newly formed dataset and performed remarkably in three-class classification as well. This paper demonstrates the proposed model's effectiveness, performance, and findings, providing a reference for concrete surface crack detection and classification for related domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Madanat, S.M., Karlaftis, M.G., McCarthy, P.S.: probabilistic infrastructure deterioration models with panel data. J. Infrastruct. Syst. 3, 4–9 (1997). https://doi.org/10.1061/(ASCE)1076-0342(1997)3:1(4)

    Article  Google Scholar 

  2. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely Connected Convolutional Networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 2261–2269. IEEE (2017). https://doi.org/10.1109/CVPR.2017.243

  3. Kim, H., Ahn, E., Cho, S., Shin, M., Sim, S.H.: Comparative analysis of image binarization methods for crack identification in concrete structures. Cem. Concr. Res. 99, 53–61 (2017). https://doi.org/10.1016/J.CEMCONRES.2017.04.018

    Article  Google Scholar 

  4. Song, J., Kim, S., Liu, Z., Quang, N.N., Bien, F.: A real time nondestructive crack detection system for the automotive stamping process. IEEE Trans. Instrum. Meas. 65, 2434–2441 (2016). https://doi.org/10.1109/TIM.2016.2583218

    Article  Google Scholar 

  5. Bas, P.L., Anderson, B.E., Remillieux, M., Pieczonka, L., Ulrich, T.J.: Elasticity Nonlinear Diagnostic method for crack detection and depth estimation. J. Acoust. Soc. Am. 138, 1836 (2015). https://doi.org/10.1121/1.4933844

    Article  Google Scholar 

  6. Liu, Z., Cao, Y., Wang, Y., Wang, W.: Computer vision-based concrete crack detection using U-net fully convolutional networks. Autom. Constr. 104, 129–139 (2019). https://doi.org/10.1016/J.AUTCON.2019.04.005

    Article  Google Scholar 

  7. Mujeeb, A., Dai, W., Erdt, M., Sourin, A.: One class based feature learning approach for defect detection using deep autoencoders. Adv. Eng. Inf. 42, (2019). https://doi.org/10.1016/J.AEI.2019.100933

  8. Lynch, J.P., Farrar, C.R., Michaels, J.E.: Structural health monitoring: technological advances to practical implementations. Proc. IEEE. 104, 1508–1512 (2016). https://doi.org/10.1109/JPROC.2016.2588818

    Article  Google Scholar 

  9. Jahanshahi, M.R., Jazizadeh, F., Masri, S.F., Becerik-Gerber, B.: Unsupervised approach for autonomous pavement-defect detection and quantification using an inexpensive depth sensor. J. Comput. Civ. Eng. 27, 743–754 (2012). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000245

    Article  Google Scholar 

  10. Fujita, Y., Hamamoto, Y.: A robust automatic crack detection method from noisy concrete surfaces. Mach. Vis. Appl. 222(22), 245–254 (2010). https://doi.org/10.1007/S00138-009-0244-5

  11. Zakeri, H., Nejad, F.M., Fahimifar, A.: Image Based Techniques for Crack Detection, Classification and Quantification in Asphalt Pavement: A Review. Arch. Comput. Methods Eng. 2016 244. 24, 935–977 (2016). https://doi.org/10.1007/S11831-016-9194-Z.

  12. Zhang, W., Zhang, Z., Qi, D., Liu, Y.: Automatic crack detection and classification method for subway tunnel safety monitoring. Sensors, 14, 19307–19328 (2014). https://doi.org/10.3390/S141019307

  13. Li, S., Zhao, X.: Image-based concrete crack detection using convolutional neural network and exhaustive search technique. Adv. Civ. Eng. (2019). https://doi.org/10.1155/2019/6520620

  14. Vu Dung, C., Duc Anh, L.: Autonomous concrete crack detection using deep fully convolutional neural network (2018). https://doi.org/10.1016/j.autcon.2018.11.028

  15. Droguett, E.L., Tapia, J., Yanez, C., Boroschek, R.: Semantic segmentation model for crack images from concrete bridges for mobile devices (2020) https://doi.org/10.1177/1748006X20965111

  16. Prasanna, P., Dana, K.J., Gucunski, N., Basily, B.B., La, H.M., Lim, R.S., Parvardeh, H.: Automated crack detection on concrete bridges. IEEE Trans. Autom. Sci. Eng. 13, 591–599 (2016). https://doi.org/10.1109/TASE.2014.2354314

    Article  Google Scholar 

  17. Hsieh, Y.-A., Tsai, Y.J.: Machine learning for crack detection: review and model performance comparison. J. Comput. Civ. Eng. 34, 04020038 (2020). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000918

    Article  Google Scholar 

  18. Pauly, L., Peel, H., Luo, S., Hogg, D., Fuentes, R.: deeper networks for pavement crack detection. In: ISARC 2017 Proceedings of the 34th International Symposium on Automation and Robotics in Construction, pp. 479–485 (2017). https://doi.org/10.22260/ISARC2017/0066

  19. Alipour, M., Harris, D.K.: Increasing the robustness of material-specific deep learning models for crack detection across different materials. Eng. Struct. 206, 110157 (2020). https://doi.org/10.1016/j.engstruct.2019.110157

    Article  Google Scholar 

  20. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1800–1807. IEEE (2017). https://doi.org/10.1109/CVPR.2017.195

  21. Özgenel, Ç.F.: Concrete crack images for classification. Mendeley Data. V2. https://doi.org/10.17632/5y9wdsg2zt.2

  22. Zhang, L., Yang, F., Daniel Zhang, Y., Zhu, Y.J.: Road crack detection using deep convolutional neural network. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3708–3712. IEEE (2016). https://doi.org/10.1109/ICIP.2016.7533052

  23. Kannojia, S.P., Jaiswal, G.: Effects of varying resolution on performance of cnn based image classification an experimental study. Int. J. Comput. Sci. Eng. 6, 451–456 (2018). https://doi.org/10.26438/ijcse/v6i9.451456

  24. Flah, M., Suleiman, A.R., Nehdi, M.L.: Classification and quantification of cracks in concrete structures using deep learning image-based techniques. Cem. Concr. Compos. 114, 103781 (2020). https://doi.org/10.1016/j.cemconcomp.2020.103781

    Article  Google Scholar 

  25. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 8, 679–698 (1986). https://doi.org/10.1109/TPAMI.1986.4767851

  26. Vincent, L.: Morphological area openings and closings for grey-scale images. In: Toet, O,Y.-L., Foster, A., Heijmans, D., Meer, P. (eds.) Shape in Picture, pp. 197–208. Springer, Berlin, Heidelberg (1994). https://doi.org/10.1007/978-3-662-03039-4_13

  27. O’Mahony, N., Campbell, S., Carvalho, A., Harapanahalli, S., Hernandez, G.V., Krpalkova, L., Riordan, D., Walsh, J.: Advances in Computer Vision. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-17795-9

  28. Guo, Y., Li, Y., Wang, L., Rosing, T.: Depthwise convolution is all you need for learning multiple visual domains. Proc. AAAI Conf. Artif. Intell. 33, 8368–8375 (2019). https://doi.org/10.1609/aaai.v33i01.33018368

    Article  Google Scholar 

  29. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Fürnkranz, J., Joachims, T. (eds.) Proceedings of the 27th International Conference on Machine Learning (ICML-10), June 21–24, pp. 807–814. Omnipress, Haifa, Israel, (2010)

    Google Scholar 

  30. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)

    Google Scholar 

  31. Zeiler, M.D., Ranzato, M., Monga, R., Mao, M., Yang, K., Le, Q.V., Nguyen, P., Senior, A., Vanhoucke, V., Dean, J., Hinton, G.E.: On rectified linear units for speech processing. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3517–3521. IEEE (2013). https://doi.org/10.1109/ICASSP.2013.6638312

  32. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: 32nd International Conferences Machine Learning ICML, vol. 1, pp. 448–456 (2015)

    Google Scholar 

  34. Bridle, J.S.: Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters. In: Proceedings of the 2nd International Conference on Neural Information Processing Systems, pp. 211–217. MIT Press, Cambridge, MA, USA (1989)

    Google Scholar 

  35. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conferences Learning Representation ICLR 2015 Conferences Track Proceeding, pp. 1–15 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazia Alfaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alfaz, N., Hasnat, A., Khan, A.M.R.N., Sayom, N.S. (2022). A Deep Convolutional Neural Network Based Approach to Classify and Detect Crack in Concrete Surface Using Xception. In: Hossain, S., Hossain, M.S., Kaiser, M.S., Majumder, S.P., Ray, K. (eds) Proceedings of International Conference on Fourth Industrial Revolution and Beyond 2021 . Lecture Notes in Networks and Systems, vol 437. Springer, Singapore. https://doi.org/10.1007/978-981-19-2445-3_3

Download citation

Publish with us

Policies and ethics