Skip to main content

Open-Source Data Collection for Activity Studies at Scale

  • Conference paper
  • First Online:
Sensor- and Video-Based Activity and Behavior Computing

Abstract

Activity studies range from detecting key indicators such as steps, active minutes, or sedentary bouts, to the recognition of physical activities such as specific fitness exercises. Such types of activity recognition rely on large amounts of data from multiple persons, especially with deep learning. However, current benchmark datasets rarely have more than a dozen participants. Once wearable devices are phased out, closed algorithms that operate on the sensor data are hard to reproduce and devices supply raw data. We present an open-source and cost-effective framework that is able to capture daily activities and routines and which uses publicly available algorithms, while avoiding any device-specific implementations. In a feasibility study, we were able to test our system in production mode. For this purpose, we distributed the Bangle.js smartwatch as well as our app to 12 study participants, who started the watches at a time of individual choice every day. The collected data was then transferred to the server at the end of each day.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. AlShorman, O., AlShorman, B., Alkhassaweneh, M., Alkahtani, F.: A review of internet of medical things (IoMT)-based remote health monitoring through wearable sensors: a case study for diabetic patients. Indonesian J. Electr. Eng. Comput. Sci. 20(1), 414–422 (2020)

    Article  Google Scholar 

  2. Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recogn. 43(10), 3605–3620 (2010)

    Article  Google Scholar 

  3. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: ESANN, vol. 3, p. 3 (2013)

    Google Scholar 

  4. Berchtold, M., Budde, M., Gordon, D., Schmidtke, H.R., Beigl, M.: ActiServ: activity recognition service for mobile phones. In: 2010 International Symposium on Wearable Computers (ISWC 2010), pp. 1–8. IEEE Computer Society, Los Alamitos, CA, USA (2010). https://doi.org/10.1109/ISWC.2010.5665868

  5. Berlin, E., Zittel, M., Braunlein, M., Laerhoven, K.V.: Low-power lessons from designing a wearable logger for long-term deployments. IEEE (2015). https://doi.org/10.1109/sas.2015.7133581

  6. Caba Heilbron, F., Escorcia, V., Ghanem, B., Carlos Niebles, J.: ActivityNet: a large-scale video benchmark for human activity understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–970 (2015)

    Google Scholar 

  7. Chen, K., Zhang, D., Yao, L., Guo, B., Yu, Z., Liu, Y.: Deep learning for sensor-based human activity recognition: overview, challenges, and opportunities. ACM Comput. Surv. (CSUR) 54(4), 1–40 (2021)

    Google Scholar 

  8. Demrozi, F., Pravadelli, G., Bihorac, A., Rashidi, P.: Human activity recognition using inertial, physiological and environmental sensors: a comprehensive survey. IEEE Access (2020)

    Google Scholar 

  9. Espiritu, J.R.D.: Aging-related sleep changes. Clin. Geriatr. Med. 24(1), 1–14 (2008)

    Article  Google Scholar 

  10. Esteban, C., Hyland, S.L., Rätsch, G.: Real-valued (medical) time series generation with recurrent conditional GANs (2017). arXiv preprint arXiv:1706.02633

  11. Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A.: Data augmentation using synthetic data for time series classification with deep residual networks (2018). arXiv preprint arXiv:1808.02455

  12. Ferreira, D., Kostakos, V., Dey, A.K.: Aware: mobile context instrumentation framework. Front. ICT 2, 6 (2015)

    Article  Google Scholar 

  13. Gjoreski, H., Ciliberto, M., Wang, L., Morales, F.J.O., Mekki, S., Valentin, S., Roggen, D.: The university of Sussex-Huawei locomotion and transportation dataset for multimodal analytics with mobile devices. IEEE Access 6, 42592–42604 (2018)

    Article  Google Scholar 

  14. Google-LLC: Google Fit API

    Google Scholar 

  15. Google-LLC: Google Wear OS

    Google Scholar 

  16. Goyal, R., et al.: The “something something” video database for learning and evaluating visual common sense. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5842–5850 (2017)

    Google Scholar 

  17. Gtoderici: gtoderici/sports-1m-dataset

    Google Scholar 

  18. Hoelzemann, A., Sorathiya, N., Van Laerhoven, K.: Data augmentation strategies for human activity data using generative adversarial neural networks. In: 2021 IEEE International Conference on Pervasive Computing and Communications Workshops and Other Affiliated Events (PerCom Workshops), pp. 8–13. IEEE (2021)

    Google Scholar 

  19. Jetté, M., Sidney, K., Blümchen, G.: Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin. Cardiol. 13(8), 555–565 (1990). https://doi.org/10.1002/clc.4960130809

    Article  Google Scholar 

  20. Kckemann, U.: Projects UWE kckemann/ecare-pub

    Google Scholar 

  21. Khan, Y., Ostfeld, A.E., Lochner, C.M., Pierre, A., Arias, A.C.: Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28(22), 4373–4395 (2016)

    Article  Google Scholar 

  22. Knight, J., Baber, C., Schwirtz, A., Bristow, H.: The comfort assessment of wearable computers. In: Sixth International Symposium on Wearable Computers (ISWC 2002). IEEE Press (2002). https://doi.org/10.1109/iswc.2002.1167220

  23. Köckemann, U., Alirezaie, M., Renoux, J., Tsiftes, N., Ahmed, M.U., Morberg, D., Lindén, M., Loutfi, A.: Open-source data collection and data sets for activity recognition in smart homes. Sensors 20(3), 879 (2020)

    Article  Google Scholar 

  24. Kunze, K., Lukowicz, P.: Sensor placement variations in wearable activity recognition. IEEE Pervasive Comput. 13(4), 32–41 (2014). https://doi.org/10.1109/mprv.2014.73

    Article  Google Scholar 

  25. Kwon, H., Tong, C., Haresamudram, H., Gao, Y., Abowd, G.D., Lane, N.D., Ploetz, T.: IMUTube: automatic extraction of virtual on-body accelerometry from video for human activity recognition. Proc. ACM Interact. Mobile Wearable Ubiquit. Technol. 4(3), 1–29 (2020)

    Article  Google Scholar 

  26. Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., Quillen, D.: Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. Int. J. Robot. Res. 37(4–5), 421–436 (2018)

    Article  Google Scholar 

  27. Madsen, A.: Running tensorflow lite on nodewatch/bangle.js - nearform (2020)

    Google Scholar 

  28. Mairittha, N., Inoue, S.: Crowdsourcing system management for activity data with mobile sensors. In: 2019 Joint 8th International Conference on Informatics, Electronics & Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), pp. 85–90. IEEE (2019)

    Google Scholar 

  29. Mannini, A., Intille, S.S., Rosenberger, M., Sabatini, A.M., Haskell, W.: Activity recognition using a single accelerometer placed at the wrist or ankle. Med. Sci. Sports Exerc. 45(11), 2193 (2013)

    Article  Google Scholar 

  30. Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: 2012 16th International Symposium on Wearable Computers, pp. 108–109. IEEE (2012)

    Google Scholar 

  31. Roggen, D., et al.: Collecting complex activity datasets in highly rich networked sensor environments. In: 2010 Seventh International Conference on Networked Sensing Systems (INSS), pp. 233–240. IEEE (2010)

    Google Scholar 

  32. Shafique, U., Qaiser, H.: A comparative study of data mining process models (KDD, CRISP-DM and SEMMA). Int. J. Innov. Sci. Res. 12(1), 217–222 (2014)

    Google Scholar 

  33. Sztyler, T., Stuckenschmidt, H.: On-body localization of wearable devices: an investigation of position-aware activity recognition. In: 2016 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 1–9. IEEE Computer Society (2016). https://doi.org/10.1109/PERCOM.2016.7456521, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7456521

  34. Twomey, N., et al.: The SPHERE challenge: activity recognition with multimodal sensor data (2016). arXiv preprint arXiv:1603.00797

  35. Vega, J., Li, M., Aguillera, K., Goel, N., Joshi, E., Durica, K.C., Kunta, A.R., Low, C.A.: RAPIDS: reproducible analysis pipeline for data streams collected with mobile devices (Preprint) (2020). https://doi.org/10.2196/preprints.23246

  36. Vickers, J., Reed, A., Decker, R., Conrad, B.P., Olegario-Nebel, M., Vincent, H.K.: Effect of investigator observation on gait parameters in individuals with and without chronic low back pain. Gait Posture 53, 35–40 (2017)

    Article  Google Scholar 

  37. Williams, G.: The world’s first open source hackable smart watch, bangle.js. Hackable Smart Watch

    Google Scholar 

Download references

Funding

This publication is part of the project ActiVAtE\(\_\)prevention which is funded by the Ministry for Science and Culture of the federal state of Lower Saxony in Germany (VW-ZN3426).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Hoelzemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hoelzemann, A., Pithan, J.S., Van Laerhoven, K. (2022). Open-Source Data Collection for Activity Studies at Scale. In: Ahad, M.A.R., Inoue, S., Roggen, D., Fujinami, K. (eds) Sensor- and Video-Based Activity and Behavior Computing. Smart Innovation, Systems and Technologies, vol 291. Springer, Singapore. https://doi.org/10.1007/978-981-19-0361-8_2

Download citation

Publish with us

Policies and ethics