Skip to main content

Bio-Inspired Formation Control for UUVs Swarm Based on Social Force Model

  • Conference paper
  • First Online:
Proceedings of 2021 International Conference on Autonomous Unmanned Systems (ICAUS 2021) (ICAUS 2021)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 861))

Included in the following conference series:

Abstract

Unmanned underwater vehicle (UUV) swarm can be used to perform a variety of tasks other than a single UUV capabilities, such as survey of marine fishery resource. Pattern formation control of UUVs swarm is a basic function for accomplishing a given mission. Since each UUV cannot access the global information of whole swarm, the design of the controller should be based on local information only. However, developing decentralized formation control algorithms for UUVs swarm is highly challenging. In this paper, we propose a bio-inspired formation control for UUVs swarm based on social force model combined with the idea of the optimized Boid model. The simulation verifies the feasibility and effectiveness of our proposed control approach. The induced swarm achieves the cohesive flocking and avoiding collision without external or global control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 699.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Oh, H., Ramezan Shirazi, A., Sun, C., Jin, Y.: Bio-inspired self-organising multi-robot pattern formation: a review. Rob. Auton. Syst. 91, 83–100 (2017). https://doi.org/10.1016/j.robot.2016.12.006

  2. Liang, H., Fu, Y., Gao, J.: Bio-inspired self-organized cooperative control consensus for crowded UUV swarm based on adaptive dynamic interaction topology. Appl. Intell. 51(7), 4664–4681 (2021). https://doi.org/10.1007/s10489-020-02104-5

    Article  Google Scholar 

  3. Jiang, C., Chen, Z., Guo, Y.: Multi-robot formation control: a comparison between model-based and learning-based methods. J. Control Decis. 7(1), 90–108 (2020). https://doi.org/10.1080/23307706.2019.1697970

    Article  MathSciNet  Google Scholar 

  4. Rizk, Y., Awad, M., Tunstel, E.W.: Cooperative heterogeneous multi-robot systems: a survey. ACM Comput. Surv. 52(2) (2019). https://doi.org/10.1145/3303848

  5. Oh, K.K., Park, M.C., Ahn, H.S.: A survey of multi-agent formation control. Automatica 53, 424–440 (2015). https://doi.org/10.1016/j.automatica.2014.10.022

    Article  MathSciNet  MATH  Google Scholar 

  6. Valbuena Reyes, L.A., Tanner, H.G.: Flocking, formation control, and path following for a group of mobile robots. IEEE Trans. Control Syst. Technol. 23(4), 1268–1282 (2015). https://doi.org/10.1109/TCST.2014.2363132

  7. Bouffanais, R.: Design and Control of Swarm Dynamics, vol. 1. Springer, Singapore (2016)

    Google Scholar 

  8. Cavagna, A., et al.: A novel control mechanism for natural flocks arXiv (2021)

    Google Scholar 

  9. Jhawar, J., et al.: Noise-induced schooling of fish. Nat. Phys. (2020). https://doi.org/10.1038/s41567-020-0787-y

    Article  Google Scholar 

  10. Jhawar, J., Guttal, V.: Noise-induced effects in collective dynamics and inferring local interactions from data. Philos. Trans. R. Soc. Lond. Biol. Sci. 375(1807), 20190381 (2020). https://doi.org/10.1098/rstb.2019.0381

    Article  Google Scholar 

  11. Rahmani, P., Peruani, F., Romanczuk, P.: Flocking in complex environments—attention trade-offs in collective information processing. PLoS Comput. Biol. 16(4), 1–18 (2020). https://doi.org/10.1371/journal.pcbi.1007697

    Article  Google Scholar 

  12. Jia, Y., Vicsek, T.: Modelling hierarchical flocking. New J. Phys. 21(9), 093048 (2019). https://doi.org/10.1088/1367-2630/ab428e

  13. Ward, A.J.W., et al.: Cohesion, order and information flow in the collective motion of mixed-species shoals. R. Soc. Open Sci. 5(12), 181132 (2018). https://doi.org/10.1098/rsos.181132

  14. Huth, A., Wissel, C.: The simulation of fish schools in comparison with experimental data. Ecol. Modell. 75–76(C), 135–146 (1994). https://doi.org/10.1016/0304-3800(94)90013-2

  15. Shaebani, M.R., Wysocki, A., Winkler, R.G., Gompper, G., Rieger, H.: Computational models for active matter. Nat. Rev. Phys. 2(4), 181–199 (2020). https://doi.org/10.1038/s42254-020-0152-1

    Article  Google Scholar 

  16. Grossman, D., Aranson, I.S., Ben Jacob, E.: Emergence of agent swarm migration and vortex formation through inelastic collisions. New J. Phys. 10(2), 023036 (2008). https://doi.org/10.1088/1367-2630/10/2/023036

  17. Escobedo, R., et al.: A data-driven method for reconstructing and modelling social interactions in moving animal groups. Philos. Trans. R. Soc. Lond. Biol. Sci. 375(1807), 20190380 (2020). https://doi.org/10.1098/rstb.2019.0380

    Article  Google Scholar 

  18. Strömbom, D., Hassan, T., Hunter Greis, W., Antia, A.: Asynchrony induces polarization in attraction-based models of collective motion. R. Soc. Open Sci. 6(4) (2019). https://doi.org/10.1098/rsos.190381

  19. Vicsek, T., Zafeiris, A.: Collective motion. Phys. Rep. 517(3–4), 71–140 (2012). https://doi.org/10.1016/j.physrep.2012.03.004

    Article  Google Scholar 

  20. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995). https://doi.org/10.1103/PhysRevE.51.4282

    Article  Google Scholar 

  21. Katz, Y., Tunstrøm, K., Ioannou, C.C., Huepe, C., Couzin, I.D.: Inferring the structure and dynamics of interactions in schooling fish. Proc. Natl. Acad. Sci. U.S.A. 108(46), 18720–18725 (2011). https://doi.org/10.1073/pnas.1107583108

    Article  Google Scholar 

  22. Lukeman, R., Li, Y.X., Edelstein-Keshet, L.: Inferring individual rules from collective behavior. Proc. Natl. Acad. Sci. U.S.A. 107(28), 12576–12580 (2010). https://doi.org/10.1073/pnas.1001763107

    Article  Google Scholar 

  23. Eriksson, A., Nilsson Jacobi, M., Nyström, J., Tunstrøm, K.: Determining interaction rules in animal swarms. Behav. Ecol. 21, 5, 1106–1111 (2010). https://doi.org/10.1093/beheco/arq118

Download references

Acknowledgment

This study was partly supported by Joint fund of Science & Technology Department of Liaoning Province and State Key Laboratory of Robotics China (2020-KF-12-09), National Natural Science Foundation of China (61603067), Foundation of Liaoning Educational Committee (QL202016) and Dalian youth talent support program (2017RQ053). Liaoning key research and development program (2020JH2/10100043), Liaoning Province Natural Science Foundation (No. 20180550674).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinzhong Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, Y. et al. (2022). Bio-Inspired Formation Control for UUVs Swarm Based on Social Force Model. In: Wu, M., Niu, Y., Gu, M., Cheng, J. (eds) Proceedings of 2021 International Conference on Autonomous Unmanned Systems (ICAUS 2021). ICAUS 2021. Lecture Notes in Electrical Engineering, vol 861. Springer, Singapore. https://doi.org/10.1007/978-981-16-9492-9_319

Download citation

Publish with us

Policies and ethics