Skip to main content

Fuzzy Cognitive Maps Applied in Determining the Contagion Risk Level of SARS-COV-2 Based on Validated Knowledge in the Scientific Community

  • Chapter
  • First Online:
Smart and Sustainable Technology for Resilient Cities and Communities

Abstract

Due to the current pandemic that is causing psychological problems, sequelae, in some cases, irreparable damage, and, mainly, leading people around the planet to death; this work aims to create an intelligent application from a validated table, presented by Texas Medical Association. Specifically, the application of fuzzy cognitive map can facilitate the contagion risk level’s inference of SARS-CoV-2 from information on human behavior of everyday life. As a possible contribution of this investigation, in addition to the listed and classified risks, the individual’s behavior should mitigate or increase his contagion risk level. The results are presented and normalized on a scale from 0 to 10.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Velavan TP, Meyer CG (2020) The COVID-19 epidemic. Tropical medicine and international health. Blackwell Publishing Ltd1 mar. 2020. Available at: https://onlinelibrary.wiley.com/doi/full/10.1111/tmi.13383. Accessed on: 31 ago. 2020

  2. Zu Z et al (2020) Coronavirus disease 2019 (COVID-19): a perspective from China radiology NLM (Medline), 1 ago. 2020. Available at: https://doi.org/10.1148/radiol.2020200490. Accessed on: 31 ago. 2020

  3. Rothan HA, Byrareddy SN (2020) The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun 109:102433

    Google Scholar 

  4. Gandhi RT, Lynch JB, Del Rio C (2020) Mild or moderate covid-19. New England J Med

    Google Scholar 

  5. Luo H et al (2020) Can Chinese medicine be used for prevention of corona virus disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chin J Integr Med 26(4):243–250

    Article  Google Scholar 

  6. Schuchmann AZ et al (2020) Vertical social isolation X Horizontal social isolation: the health and social dilemmas in coping with the COVID-19 pandemic. Braz J Health Rev 3(2):3556–3576

    Article  Google Scholar 

  7. Wilder-Smith AC, Chiew J, Lee VJ (2020) Can we contain the COVID-19 outbreak with the same measures as for SARS? The Lancet Infectious Diseases Lancet Publishing Group, 1 may 2020. Available at: https://pmc/articles/PMC7102636/?report=abstract. Accessed on: 31 ago. 2020

    Google Scholar 

  8. Uddin M et al (2020) SARS-CoV-2/COVID-19: Viral genomics, epidemiology, vaccines, and therapeutic interventions. Viruses 12(5):526

    Article  Google Scholar 

  9. Pereira MD et al (2020) Epidemiological, clinical, and therapeutic aspects of COVID-19. J Health Biol Sci 8(1):1

    Google Scholar 

  10. Zhai P et al (2020) The epidemiology, diagnosis, and treatment of COVID-19. Int J Antimicrob Agents 55(5):105955

    Google Scholar 

  11. Jin Y et al (2020) Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses 12(4):372

    Article  Google Scholar 

  12. Sun P et al (2020) Understanding of COVID-19 based on current evidence. J Med Virol 92(6):548–551

    Article  Google Scholar 

  13. PAHO (2020) Fact sheet COVID-19—PAHO and WHO office in Brazil—PAHO/WHO Pan American Health Organization. Available at: https://www.paho.org/en/covid19\#superficies. Accessed on: 31 ago 2020

  14. FIOCRUZ (2020) How long does the coronavirus remain active on different surfaces? Available at: https://portal.fiocruz.br/pergunta/Quanto-tempo-o-coronavirus-permanece-ativo-em-diferentes-superficies. Accessed on: 31 ago 2020

  15. Kampf G et al (2020) Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. Journal of Hospital Infection, WB Saunders Ltd1 mar. 2020. Available at: https://doi.org/10.1016/j.jhin.2020.01.022. Accessed on: 31 ago 2020

  16. Lauer SA et al (2020) The incubation period of coronavirus disease 2019 (CoVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med 172(9):577–582

    Article  Google Scholar 

  17. Quan LL et al (2020) COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis. Journal of Medical Virology, John Wiley and Sons Inc., 1 jun 2020. Available at: https://onlinelibrary.wiley.com/doi/full/10.1002/jmv.25757. Accessed on: 31 ago 2020

  18. Long QX et al (2020) Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med 26(8):1200–1204

    Article  Google Scholar 

  19. Rodriguez-Morales AJ et al (2020) Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis. Travel Med Infect Dis 34:101623

    Google Scholar 

  20. Yang W et al (2020) Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): a multi-center study in Wenzhou city, Zhejiang. China. J Infect 80(4):388–393

    Article  Google Scholar 

  21. Lai J et al (2020) Factors associated with mental health outcomes among health care workers exposed to coronavirus disease 2019. JAMA network open 3(3)

    Google Scholar 

  22. Mcintosh K (2020) Coronavirus disease 2019 (COVID-19). Available at: https://www.cmim.org/PDF/_covid/Coronavirus/_disease2019/_COVID-19/_UpToDate2.pdf. Accessed on: 31 ago 2020

  23. Murthy S, Gomersall CD, Fowler RA (2020) Care for critically ill patients with COVID-19JAMA—Journal of the American Medical Association, American Medical Association21 apr 2020. Available at: http://www.remapcap.org. Accessed on: 31 ago 2020

  24. Poggio C et al (2020) Copper-alloy surfaces and cleaning regimens against the spread of SARS-CoV-2 in dentistry and orthopedics. From fomites to anti-infective nanocoatings. Materials (Basel, Switzerland) 13(15):3244

    Google Scholar 

  25. Shahbaz M et al (2020) Food safety and COVID-19: Precautionary measures to limit the spread of Coronavirus at food service and retail sector, Journal of Pure and Applied Microbiology16 abr. 2020. Available at: https://microbiologyjournal.org/food-safety-and-covid-19-precautionary-measures-to-limit-the-spread-of-coronavirus-at-food-service-and-retail-sector. Accessed on: 31 ago 2020

  26. Adams JG, Walls RM (2020) Supporting the health care workforce during the COVID-19 global epidemic, JAMA—Journal of the American Medical Association, American Medical Association, 21 apr 2020. Available at: https://pubmed.ncbi.nlm.nih.gov/32163102/. Accessed on: 31 ago 2020

  27. Neto ARS, Bortoluzzi BB, Freitas DRJ (2020) Personal protective equipment to prevent infection by Sars-Cov-2. JMPHC, Journal of Management and Primary Health Care 12:1–7

    Google Scholar 

  28. Avancini (2020) Cam disinfectants for use in the sanitary context of covid-19. Infect Health Prev Mag

    Google Scholar 

  29. Traneva V, Mavrov D, Tranev S (2020) Fuzzy two-factor analysis of COVID-19 cases in Europe. In: 2020 IEEE 10th international conference on intelligent systems (IS)

    Google Scholar 

  30. Elaziz MA et al (2020) An improved marine predators algorithm with fuzzy entropy for multi-level thresholding: real world example of COVID-19 CT image segmentation. IEEE Access 8:125306–125330

    Article  Google Scholar 

  31. Mohammed MA et al (2020) Benchmarking methodology for selection of optimal COVID-19 diagnostic model based on entropy and TOPSIS methods. IEEE Access 8:99115–99131

    Article  Google Scholar 

  32. Kosko B (1986) Fuzzy cognitive maps. Int J Man Mach Stud 24(1):65–75

    Google Scholar 

  33. Ndousse TD, Okuda T (1996) Computational intelligence for distributed fault management in networks using fuzzy cognitive maps. In: Proceedings of ICC/SUPERCOMM ’96—international conference on communications, pp 1558–1562

    Google Scholar 

  34. Parsopoulos KE et al (2003) A first study of fuzzy cognitive maps learning using particle swarm optimization. In: Proceedings of the IEEE 2003 congress on evolutionary computation (IEEE CEC 2003), Canberra, Australia, pp 1440–1447

    Google Scholar 

  35. Aguilar J (2004) Dynamic random fuzzy cognitive maps. Comput Sist 7(4):260–270

    Google Scholar 

  36. Mendonça M, Angélico BA, Arruda LVR, Neves F Jr (2013) A subsumption architecture to develop dynamic cognitive network-based models with autonomous navigation application. J Control Autom Electr Syst 1:3–14

    Google Scholar 

  37. Papageorgiou EI (2014) Fuzzy cognitive maps for applied sciences and engineering. Springer, Heidelberg

    Book  Google Scholar 

  38. Yesil E, Ozturk C, Dodurka MF, Sakalli A (2013) Fuzzy cognitive maps learning using artificial bee colony optimization. In: 2013 IEEE international conference on fuzzy systems (FUZZ-IEEE), Hyderabad

    Google Scholar 

  39. Mazzuto G, Ciarapica FE, Stylios C, Georgopoulos VC (2018) Fuzzy cognitive maps designing through large dataset and experts’ knowledge balancing. In: 2018 IEEE international conference on fuzzy systems (FUZZ-IEEE), Rio de Janeiro

    Google Scholar 

  40. Ghazanfari M, Alizadeh S (2008) Learning FCM with simulated annealing

    Google Scholar 

  41. Dickerson JA, Kosko B (1996) Virtual worlds as fuzzy dynamical system. In: Sheu B (ed) Technology for multimedia, 1st edn., IEEE Press, Hoboken, pp 1–35

    Google Scholar 

  42. Mendonça M, da Silva ES, Chrun IR, Arruda LVR (2016) Hybrid dynamic fuzzy cognitive maps and hierarchical fuzzy logic controllers for autonomous mobile navigation. In: 2016 IEEE international conference on fuzzy systems (FUZZ-IEEE)

    Google Scholar 

  43. Perusich K (1996) Fuzzy cognitive maps for policy analysis. IEEE Purdue University South Bend

    Google Scholar 

  44. Lee KC, Lee S (2003) A cognitive map simulation approach to adjusting the design factors of the electronic commerce web sites. Expert Syst Appl 24(1):1–11

    Article  Google Scholar 

  45. Pajares G, De La Cruz JM (2006) Fuzzy cognitive maps for stereovision matching. Pattern Recogn 39(11):2101–2114

    Google Scholar 

  46. Papageorgiou E, Stylios C, Groumpos P (2007) Novel for supporting medical decision making of different data types based on fuzzy cognitive map framework. In: Proceedings of the 29th annual international conference of the Ieee Embs Cité Internationale, Lyon, France August 23–26

    Google Scholar 

  47. Mendonça M, Arruda LVR, Neves F (2011) Autonomous navigation system using event driven-fuzzy cognitive maps. Springer Science+Business Media

    Google Scholar 

  48. Mendonça M, Chrun IR, Neves-Jr F, Arruda LVR (2017) A cooperative architecture for swarm robotic based on dynamic fuzzy cognitive maps. Eng Appl Artif Intell 59:122–132

    Article  Google Scholar 

  49. Makrinos A, Papageorgiou E, Stylios C, Gemtos T (2007) Introducing fuzzy cognitive maps for decision making in precision agriculture. Precision agriculture 2007—papers presented at the 6th European conference on precision agriculture

    Google Scholar 

  50. Carvalho JP, Tome JAB (2001) Rule based fuzzy cognitive maps-expressing time in qualitative system dynamics. In: 10th IEEE international conference on fuzzy systems

    Google Scholar 

  51. Miao Y, Liu Z-Q, Siew CK, Miao CY (2001) Dynamical cognitive network—an extension of fuzzy cognitive map. IEEE Trans Fuzzy Syst 9(5):760–770

    Article  Google Scholar 

  52. Acampora G, Loia V (2009) A dynamical cognitive multi-agent system for enhancing ambient intelligence scenarios, fuzzy systems, 2009. In: IEEE International Conference on FUZZ-IEEE 2009, Jeju Island, pp 770–777

    Google Scholar 

  53. de Souza LB, Soares PP, Barros RVPD, Mendonça M, Papageorgiou E (2017) Dynamic fuzzy cognitive maps and fuzzy logic controllers applied in industrial mixer. Int J Adv Syst Meas 10(3):222–233

    Google Scholar 

  54. Mendonça M, Chrun IR, Neves-Jr F, Arruda LVR (2017) A cooperative architecture for swarm robotic based on dynamic fuzzy cognitive maps. Eng Appl Artif Intell 59(March):122–132

    Article  Google Scholar 

  55. Stach W, Kurgan L, Pedrycz W, Reformat M (2005) Evolutionary development of fuzzy cognitive maps. IEEE international conference on fuzzy systems, pp 619–624

    Google Scholar 

  56. Nápoles G, Bello R, Vanhoof K (2013) Learning stability features on sigmoid fuzzy cognitive maps through a swarm intelligence approach. In: CIARP 2013: progress in pattern recognition, image analysis, computer vision, and applications. Lecture notes in computer science, vol 8258

    Google Scholar 

  57. Arruda LVR, Mendonça M, Neves-Jr F, Chrun IR, Papageorgiou E (2018) Artificial life environment modeled by dynamic fuzzy cognitive maps. IEEE Trans Cogn Dev Syst 10(1):88–101

    Article  Google Scholar 

  58. Mendonça M, da Silva ES, Chrun IR, Arruda LVR (2016) Hybrid dynamic fuzzy cognitive maps and hierarchical fuzzy logic controllers for autonomous mobile navigation. In: 2016 IEEE international conference on fuzzy systems (FUZZ-IEEE), Vancouver, BC, pp 2516–2521

    Google Scholar 

  59. Soares PP, de Souza LB, Mendonça MR, Palacios HC, de Almeida JPLS (2018) Group of robots inspired by swarm robotics exploring unknown environments. In: 2018 IEEE international conference on fuzzy systems (FUZZ-IEEE)

    Google Scholar 

  60. Mendonça M, Kondo HS, Botoni de Souza L, Palácios RHC, de Almeida JPLS (2019) Semi-unknown environments exploration inspired by swarm robotics using fuzzy cognitive maps. In: 2019 IEEE international conference on fuzzy systems (FUZZ-IEEE), New Orleans, LA, USA

    Google Scholar 

  61. Mendonça M, Palacios RHC, Papageorgiou E, de Souza LB (2020) Multi-robot exploration using dynamic fuzzy cognitive maps and ant colony optimization. In: 2020 IEEE international conference on fuzzy systems (FUZZ-IEEE), Glasgow, United Kingdom

    Google Scholar 

  62. Texas Medical Association: TMA, what’s more risky, going to a bar or opening the mail? Available at: https://www.texmed.org/TexasMedicineDetail.aspx?id=53977. Accessed on: 20 july 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcio Mendonça .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mendonça, M., Palácios, R.H.C., Chrun, I.R., Fuziy, A., da Silva, D.F., Foggiato, A.A. (2022). Fuzzy Cognitive Maps Applied in Determining the Contagion Risk Level of SARS-COV-2 Based on Validated Knowledge in the Scientific Community. In: Howlett, R.J., Jain, L.C., Littlewood, J.R., Balas, M.M. (eds) Smart and Sustainable Technology for Resilient Cities and Communities. Advances in Sustainability Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-9101-0_13

Download citation

Publish with us

Policies and ethics