Skip to main content

An Overview of Pulmonary Tuberculosis Detection and Classification Using Machine Learning and Deep Learning Algorithms

  • Conference paper
  • First Online:
Proceedings of the International Conference on Paradigms of Communication, Computing and Data Sciences

Part of the book series: Algorithms for Intelligent Systems ((AIS))

  • 649 Accesses

Abstract

Pulmonary tuberculosis (TB) has been considered a leading cause of concern around the world for decades and can be considered as a pandemic itself. The increasing number of cases is a huge concern. Several investigations and research have been carried out in past few years regarding early detection of mycobacterium tuberculosis and different Computer automated systems (CAS) have been proposed. Authors have applied different techniques starting from preprocessing data, dividing the dataset into different training, validation, and test sets with different ratios, processing different machine learning and deep learning algorithms on these datasets to obtain optimum and accurate results for detection and classification. This paper consists of a comprehensive study of the research work in detection of tuberculosis. This paper firstly discusses data collection and preprocessing of these data. The paper next provides an overview of machine learning and deep learning algorithm implementation. Finally, the paper presents a comparative analysis of existing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. GBD Tuberculosis Collaborators: The global burden of tuberculosis: results from the global burden of disease study 2015. Lancet Infect. Dis. 18(3), 261–284 (2018)

    Google Scholar 

  2. https://tbfacts.org/tb-statistics-india/

  3. Chang, J., Arbeláez, P., Switz, N., Reber, C., Tapley, A., Davis, J.L., et al.: Automated tuberculosis diagnosis using fluorescence images from a mobile microscope. In: Proceedings of Medical Image Computing and Computer-Assisted Intervention—MICCAI, vol. 7512, pp. 345–352 (2012)

    Google Scholar 

  4. Panicker, R.O., Soman, B., Saini, G., Rajan, J.: A review of automatic methods based on image processing techniques for tuberculosis detection from microscopic sputum smear images. J. Med. Syst. 40(1), 1–13 (2016)

    Article  Google Scholar 

  5. Khutlang, R., Krishnan, S., Dendere, R., Whitelaw, A., Veropoulos, K., Learmonth, G., et al.: Classification of mycobacterium tuberculosis in images of ZN stained sputum smears. IEEE Trans. Inf. Technol. Biomed. 14(4), 949–957 (2010)

    Article  Google Scholar 

  6. Khutlang, R., Krishnan, S., Whitelaw, A., Douglas, T.S.: Automated detection of tuberculosis in Ziehl-Neelsen stained sputum smears using two one-class classifiers. J. Microsc. 237(1), 96–102 (2010)

    Article  MathSciNet  Google Scholar 

  7. Veropoulos, K., Campbell, C., Learmonth, G.: Image processing and neural computing used in the diagnosis of tuberculosis. In: Proceedings of IEE Colloquium on Intelligent Methods in Healthcare and Medical Applications (Digest No. 1998/514), pp. 8/1–8/4 (1998)

    Google Scholar 

  8. Costa, M.G., Costa Filho, C.F.F., Sena, J.F., Salem, J., Lima, M.O.: Automatic identification of Mycobacterium tuberculosis with conventional light microscopy. In: Proceedings of 30th Annual International IEEE Engineering in Medicine and Biology Society, pp. 382–385 (2008)

    Google Scholar 

  9. Sotaquirá, M., Rueda, L., Narvaez, R.: Detection and quantification of bacilli and clusters present in sputum smear samples: a novel algorithm for pulmonary tuberculosis diagnosis. In: Proceedings of International Conference on Digital Image Processing, pp. 117–121 (2009)

    Google Scholar 

  10. Surgitha, G.E., Murugesan, G.: Detection of tuberculosis bacilli from microscopic sputum smear images. In: ICBSII. IEEE Press, Chennai, India (2017). http://doi.org/10.1109/ICBSII.2017.8082271

  11. Roh, Y., Heo, G., Whang, S.E.: A survey on data collection for machine learning: a big data—AI integration perspective. IEEE Trans. Knowl. Data Eng. http://doi.org/10.1109/TKDE.2019.2946162

  12. Muyama, L., Nakatumba-Nabende, J., Mudali, D.: Automated detection of tuberculosis from sputum smear microscopic images using transfer learning techniques. In: Abraham, A., Siarry, P., Ma, K., Kaklauskas, A. (eds.) Intelligent Systems Design and Applications. ISDA 2019. Advances in Intelligent Systems and Computing, vol. 1181. Springer, Cham (2021). http://doi.org/10.1007/978-3-030-49342-4_6

  13. Li, X., Zhou, Y., Du, P., et al.: A deep learning system that generates quantitative CT reports for diagnosing pulmonary tuberculosis. Appl. Intell. (2020). https://doi.org/10.1007/s10489-020-02051-1

    Article  Google Scholar 

  14. Chang, R.I., Chiu, Y.H., Lin, J.W.: Two-stage classification of tuberculosis culture diagnosis using convolutional neural network with transfer learning. J. Supercomput. 76, 8641–8656 (2020). http://doi.org/10.1007/s11227-020-03152-x

  15. Oloko-Oba, M., Viriri, S.: Tuberculosis abnormality detection in chest X-rays: a deep learning approach. In: Chmielewski, L.J., Kozera, R., Orłowski, A. (eds.) Computer Vision and Graphics. ICCVG 2020. Lecture Notes in Computer Science, vol. 12334. Springer, Cham (2020). http://doi.org/10.1007/978-3-030-59006-2_11

  16. https://lhncbc.nlm.nih.gov/publication/pub9931

  17. Ayaz, M., Shaukat, F., Raja, G.: Ensemble learning based automatic detection of tuberculosis in chest X-ray images using hybrid feature descriptors. Phys. Eng. Sci. Med. (2021). https://doi.org/10.1007/s13246-020-00966-0

    Article  Google Scholar 

  18. Yugaswara, H., Fathurahman, M., Suhaeri: Experimental analysis of tuberculosis classification based on clinical data using machine learning techniques. In: Ghazali, R., Nawi, N., Deris, M., Abawajy, J. (eds.) Recent Advances on Soft Computing and Data Mining. SCDM 2020. Advances in Intelligent Systems and Computing, vol. 978. Springer, Cham (2020). http://doi.org/10.1007/978-3-030-36056-6_15

  19. Ali, M., Arshad, W.: Prediction of tuberculosis using supervised learning techniques under Pakistani patients. In: Khanna, A., Gupta, D., Bhattacharyya, S., Snasel, V., Platos, J., Hassanien, A. (eds.) International Conference on Innovative Computing and Communications. Advances in Intelligent Systems and Computing, vol. 1087. Springer, Singapore (2020). http://doi.org/10.1007/978-981-15-1286-5_4

  20. Raju, M., Aswath, A., Kadam, A., Pagidimarri, V.: Automatic detection of tuberculosis using deep learning methods. In: Laha, A. (ed.) Advances in Analytics and Applications. Springer Proceedings in Business and Economics. Springer, Singapore (2019). http://doi.org/10.1007/978-981-13-1208-3_11

  21. El-Melegy, M., Mohamed, D., ElMelegy, T.: Automatic detection of tuberculosis bacilli from microscopic sputum smear images using faster R-CNN, transfer learning and augmentation. In: Morales, A., Fierrez, J., Sánchez, J., Ribeiro, B. (eds.) Pattern Recognition and Image Analysis. IbPRIA 2019. Lecture Notes in Computer Science, vol. 11867. Springer, Cham (2019). http://doi.org/10.1007/978-3-030-31332-6_24

  22. Shah, M.I., et al.: Ziehl-Neelsen sputum smear microscopy image database: a resource to facilitate automated bacilli detection for tuberculosis diagnosis. J. Med. Imaging 4(2) (2017)

    Google Scholar 

  23. Hernández, A., Panizo, Á., Camacho, D.: An ensemble algorithm based on deep learning for tuberculosis classification. In: Yin, H., Camacho, D., Tino, P., Tallón-Ballesteros, A., Menezes, R., Allmendinger, R. (eds.) Intelligent Data Engineering and Automated Learning—IDEAL 2019. IDEAL 2019. Lecture Notes in Computer Science, vol. 11871. Springer, Cham (2019). http://doi.org/10.1007/978-3-030-33607-3_17

  24. Kant, S., Srivastava, M.M.: Towards automated tuberculosis detection using deep learning. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India, pp. 1250–1253 (2018). http://doi.org/10.1109/SSCI.2018.8628800

  25. http://doi.org/10.1155/2018/4168538

  26. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: Chest X-ray 8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of IEEE CVPR 2017, Honolulu, HI, USA (2017)

    Google Scholar 

  27. Karnkawinpong, T., Limpiyakorn, Y.: Chest X-ray analysis of tuberculosis by convolutional neural networks with affine transforms. In: ACM International Conference Proceedings Series, pp. 90–93 (2018). https://doi.org/10.1145/3297156.3297251

  28. Sathitratanacheewin, S., Pongpirul, K.: Deep learning for automated classification of tuberculosis-related chest x-ray: dataset specificity limits diagnostic performance generalizability. arXiv preprint arXiv: 1811.07985 (2018)

    Google Scholar 

  29. López, Y.P., Costa Filho, C.F.F., Aguilera, L.M.R., Costa, M.G.F.: Automatic classification of light field smear microscopy patches using convolutional neural networks for identifying mycobacterium tuberculosis. In: 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Pucon, pp. 1–5 (2017). http://doi.org/10.1109/CHILECON.2017.8229512

  30. Costa, M.G.F., et al.: A sputum smear microscopy image dataset for automatic bacilli detection in conventional microscopy. Presented at the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago (2015)

    Google Scholar 

  31. Santosh, K.C., Antani, S.: Automated chest X-ray screening: can lung region symmetry help detect pulmonary abnormalities? IEEE Trans. Med. Imaging 37(5), 1168–1177 (2018). https://doi.org/10.1109/TMI.2017.2775636

    Article  Google Scholar 

  32. Lakhani, P., Sundaram, B.: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284, 574–582 (2017). https://doi.org/10.1148/radiol.2017162326

  33. Jaeger, S., Karargyris, A., Candemir, S., Folio, L., Siegelman, J., Callaghan, F., Xue, Z., Palaniappan, K., Singh, R.K., Antani, S., Thoma, G., Wang, Y.-X., Lu, P.-X., McDonald, C.J.: Automatic tuberculosis screening using chest radiographs. IEEE Trans. Med. Imaging 33(2), 233–245 (2014). http://doi.org/10.1109/TMI.2013.2284099. Epub 2013 Oct 1. PMID: 24108713

  34. Priya, E., Srinivasan, S., Ramakrishnan, S.: Classification of tuberculosis digital images using hybrid evolutionary extreme learning machines. In: Nguyen, N.T., Hoang, K., Jȩdrzejowicz, P. (eds.) Computational Collective Intelligence. Technologies and Applications. ICCCI 2012. Lecture Notes in Computer Science, vol. 7653. Springer, Berlin (2012). http://doi.org/10.1007/978-3-642-34630-9_28

  35. van Ginneken, B., Katsuragawa, S., ter Haar Romeny, B.M., Doi K., Viergever, M.A.: Automatic detection of abnormalities in chest radiographs using local texture analysis. IEEE Trans. Med. Imaging 21(2), 139–149 (2002). http://doi.org/10.1109/42.993132

  36. Karmani, P., Chandio, A.A., Korejo, I.A., Chandio, M.S.: A review of machine learning for healthcare informatics specifically tuberculosis disease diagnostics. In: Bajwa, I., Kamareddine, F., Costa, A. (eds.) Intelligent Technologies and Applications. INTAP 2018. Communications in Computer and Information Science, vol. 932. Springer, Singapore (2019). http://doi.org/10.1007/978-981-13-6052-7_5

  37. https://arxiv.org/abs/1610.05463

  38. https://arxiv.org/abs/1409.1556

  39. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, pp. 770–778 (2016). http://doi.org/10.1109/CVPR.2016.90

  40. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, pp. 2261–2269 (2017). http://doi.org/10.1109/CVPR.2017.243

  41. Mateos-Pérez, J.M., Redondo, R., Nava, R., Valdiviezo, J.C., Cristóbal, G., Escalante-Ramérez, B., Ruiz-Serrano, M.J., Pascau, J., Desco, M.: Comparative evaluation of autofocus algorithms for a real-time system for automatic detection of Mycobacterium tuberculosis. Cytometry A 81(3), 213–221 (2012). http://doi.org/10.1002/cyto.a.22020

  42. Russell, M.J., Douglas, T.S.: Evaluation of autofocus algorithms for tuberculosis microscopy. In: Proceedings of 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), pp. 3489–3492 (2007). http://doi.org/10.1109/IEMBS.2007.4353082

  43. Osibote, O.A., Dendere, R., Krishnan, S., Douglas, T.S.: Automated focusing in bright-field microscopy for tuberculosis detection. J. Microsc. 240(2), 155–163 (2010). https://doi.org/10.1111/j.1365-2818.2010.03389.x

    Article  MathSciNet  Google Scholar 

  44. Zhai, Y., Liu, Y., Zhou, D., Liu, S.: Automatic identification of Mycobacterium tuberculosis from ZN-stained sputum smear: algorithm and system design. In: Proceedings of IEEE International Conference on Robotics and Biomimetics (ROBIO), Tianjin, pp. 41–46 (2010). http://doi.org/10.1109/ROBIO.2010.5723300

  45. Costa Filho, C.F.F., Costa, M.G.F., Júnior, A.K.: Autofocus functions for tuberculosis diagnosis with conventional sputumsmear microscopy. In: Méndez-Vilas, A. (ed.) Proceedings of Current Microscopy Contributions to Advances in Science and Technology. Formatex Research Center, pp. 13–20 (2012)

    Google Scholar 

  46. Junior, A.K., Costa, M.G., Costa Filho, C.F.F., Fujimoto, L.B.M., Salem, J.: Evaluation of autofocus functions of conventional sputum smear microscopy for tuberculosis. In: Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Argentina, pp. 3041–3044 (2010). http://doi.org/10.1109/IEMBS.2010.5626143

  47. Panicker, R.O., Kalmady, K.S., Rajan, J., Sabu, M.K.: Automatic detection of tuberculosis bacilli from microscopic sputum images using deep learning methods. Biocybern. Biomed. Eng. 38, 691–699 (2018). https://doi.org/10.1016/j.bbe.2018

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saha, P., Neogy, S. (2022). An Overview of Pulmonary Tuberculosis Detection and Classification Using Machine Learning and Deep Learning Algorithms. In: Dua, M., Jain, A.K., Yadav, A., Kumar, N., Siarry, P. (eds) Proceedings of the International Conference on Paradigms of Communication, Computing and Data Sciences. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-16-5747-4_72

Download citation

Publish with us

Policies and ethics