Skip to main content

RAT Selection Strategies for Next-Generation Wireless Networks: A Taxonomy and Survey

  • Conference paper
  • First Online:
Proceedings of the International Conference on Paradigms of Communication, Computing and Data Sciences

Part of the book series: Algorithms for Intelligent Systems ((AIS))

Abstract

Next-generation wireless network is the revolutionary technology envisioned to support the legions of heterogeneous data traffic and unprecedented deployment scenarios. In cognizance to this, 5G heterogeneous network (HetNet) emerged as a holistic approach that allows the network performance optimization in terms of capacity and user experience. However, exploiting these advantages of HetNet requires seamless connectivity to the suitable radio access technology (RAT) that facilitates ubiquitous and reliable communication. Consequently, substantial research endeavor has been made in the direction of optimal RAT selection lately. However, a comprehensive surveyed work has not been reported in the literature. Therefore, a detailed taxonomy is presented in this article to facilitate network engineers and researchers with the systematic study of the recent state-of-the-art work on optimal RAT selection in the 5G HetNets. In this taxonomy, the design aspects, merits and demerits of the existing user association scheme have been presented for their deployment in the next-generation wireless networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cisco: Cisco Annual Internet Report (2018–2023) White Paper (2018). https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html. Accessed 22 Dec 2020

  2. Rong, B., Zhou, J., Kadoch, M., Sun, G.L.: Emerging technologies for 5G radio access network: architecture, physical layer technologies, and MAC layer protocols. Wirel. Commun. Mob. Comput. 2018, 1–2 (2018)

    Article  Google Scholar 

  3. Pandi, V.S., Priya, J.L.: A survey on 5G mobile technology. In: 2017 IEEE International Con- ference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), pp. 1656–1659 (2017)

    Google Scholar 

  4. Benchaabene, Y., Boujnah, N., Zarai, F.: 5G cellular: survey on some challenging tech- niques. In: 2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), pp. 348–353 (2017)

    Google Scholar 

  5. Raschella, A., Bouhafs, F., Seyedebrahimi, M., Mackay, M., Shi, Q.: Quality of service oriented access point selection framework for large Wi-Fi networks. IEEE Trans. Netw. Serv. Manag. 14(2), 441–455 (2017)

    Article  Google Scholar 

  6. Gharsallah, A., Zarai, F., Neji, M.: SDN/NFV-based handover management approach for ultradense 5G mobile networks. Int. J. Commun. Syst. 32(17), e3831–e3831 (2019)

    Article  Google Scholar 

  7. Mouawad, N., Naja, R., Tohme, S.: SDN based handover management for a tele-operated driving use case. In: 12th IFIP Wireless and Mobile Networking Conference (WMNC), pp. 47–54 (2019)

    Google Scholar 

  8. Yazdinejad, A., Parizi, R.M., Dehghantanha, A., Choo, K.K.R.: Blockchain-enabled au- thentication handover with efficient privacy protection in SDN-based 5G networks. IEEE Trans. Netw. Sci. Eng. 1 (2020)

    Google Scholar 

  9. Priya, B., Malhotra, J.: 5GAuNetS: an autonomous 5G network selection framework for In- dustry 4.0. Soft Comput. 24(13), 9507–9523 (2020)

    Google Scholar 

  10. Yan, M., Feng, G., Zhou, J., Qin, S.: Smart multi-RAT access based on multiagent reinforcement learning. IEEE Trans. Veh. Technol. 67(5), 4539–4551 (2018)

    Article  Google Scholar 

  11. Zhao, N., Liang, Y.C., Niyato, D., Pei, Y., Wu, M., Jiang, Y.: Deep reinforcement learning for user association and resource allocation in heterogeneous cellular networks. IEEE Trans. Wirel. Commun. 18(11), 5141–5152 (2019)

    Article  Google Scholar 

  12. Wang, X., Li, J., Wang, L., Yang, C., Han, Z.: Intelligent user-centric network selection: a model-driven reinforcement learning framework. IEEE Access 7, 21645–21661 (2019)

    Article  Google Scholar 

  13. Sun, Y.: Efficient handover mechanism for radio access network slicing by exploiting distributed learning. IEEE Trans. Netw. Serv. Manage. 17(4), 2620–2633 (2020)

    Article  Google Scholar 

  14. Nguyen, D.D., Nguyen, H.X., White, L.B.: Reinforcement learning with network-assisted feedback for heterogeneous RAT selection. IEEE Trans. Wirel. Commun. 16(9), 6062–6076 (2017)

    Article  Google Scholar 

  15. Alfoudi, A.S.D., Newaz, S.H.S., Ramlie, R., Lee, G.M., Baker, T.: Seamless mobility man- agement in heterogeneous 5G networks: a coordination approach among distributed SDN controllers. In: 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), pp. 1–6 (2019)

    Google Scholar 

  16. Arabi, S., Hammouti, H.E., Sabir, E., Elbiaze, H., Sadik, M.: RAT association for autonomic IoT systems. IEEE Netw. 33(6), 116–123 (2019)

    Article  Google Scholar 

  17. Guo, D., Tang, L., Zhang, X., Liang, Y.C.: Joint optimization of handover control and power allocation based on multi-agent deep reinforcement learning. IEEE Trans. Veh. Technol. 69, 13124–13138 (2020)

    Article  Google Scholar 

  18. Wang, D., Sun, Q., Wang, Y., Han, X., Chen, Y.: Network-assisted vertical handover scheme in heterogeneous aeronautical network. In: 2020 Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), pp. 148–152 (2020)

    Google Scholar 

  19. Munjal, M., Singh, N.P.: Utility aware network selection in small cell. Wirel. Netw. 25(5), 2459–2472 (2019)

    Article  Google Scholar 

  20. Desogus, C., Anedda, M., Murroni, M., Muntean, G.M.: A Traffic type-based differentiated reputation algorithm for radio resource allocation during multi-service content delivery in 5G heterogeneous scenarios. IEEE Access 7, 27720–27735 (2019)

    Article  Google Scholar 

  21. Zhu, A., Guo, S., Liu, B., Ma, M., Yao, J., Su, X.: Adaptive multiservice heterogeneous network selection scheme in mobile edge computing. IEEE Internet Things J. 6(4), 6862–6875 (2019)

    Article  Google Scholar 

  22. Dua, A., Kumar, N., Bawa, S.: Game theoretic approach for real-time data dissemination and offloading in vehicular ad hoc networks. J. Real-Time Image Proc. 13(3), 627–644 (2017)

    Article  Google Scholar 

  23. Kumar, K., Prakash, A., Tripathi, R.: A spectrum handoff scheme for optimal network selection in Cognitive Radio vehicular networks: a game theoretic auction theory approach. Phys. Commun. 24, 19–33 (2017)

    Article  Google Scholar 

  24. Goyal, P., Lobiyal, D.K., Katti, C.P.: Game theory for vertical handoff decisions in het- erogeneous wireless networks: a tutorial. In: Bhattacharyya, S., Gandhi, T., Sharma, K., Dutta, P. (eds.) Advanced Computational and Communication Paradigms, pp. 422–430 (2018)

    Google Scholar 

  25. Ning, Z.: Mobile edge computing enabled 5G health monitoring for internet of medical things: a decentralized game theoretic approach. IEEE J. Sel. Areas Commun. 39(2), 463–478 (2021)

    Article  Google Scholar 

  26. Ozturk, M., Gogate, M., Onireti, O., Adeel, A., Hussain, A., Imran, M.A.: A novel deep learning driven, low-cost mobility prediction approach for 5G cellular networks: the case of the Control/Data Separation Architecture (CDSA). Neurocomputing 358, 479–489 (2019)

    Article  Google Scholar 

  27. Sandoval, R.M., Canovas-Carrasco, S., Garcia-Sanchez, A.J., Garcia-Haro, J.: A reinforcement learning-based framework for the exploitation of multiple RATs in the IoT. IEEE Access 7, 123341–123354 (2019)

    Article  Google Scholar 

  28. Ding, H., Zhao, F., Tian, J., Li, D., Zhang, H.: A deep reinforcement learning for user association and power control in heterogeneous networks. Ad Hoc Netw. 102, 102069–102069 (2020)

    Article  Google Scholar 

  29. Mollel, M.S., Abubakar, A.I., Ozturk, M., Kaijage, S., Kisangiri, M., Zoha, A., Imran, M.A., Abbasi, Q.H.: Intelligent handover decision scheme using double deep reinforcement learning. Phys. Commun. 42, 101133–101133 (2020)

    Article  Google Scholar 

  30. Perez, J.S., Jayaweera, S.K., Lane, S.: Machine learning aided cognitive RAT selection for 5G heterogeneous networks. In: 2017 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), pp. 1–5 (2017)

    Google Scholar 

  31. Tang, C., Chen, X., Chen, Y., Li, Z.: A MDP-based network selection scheme in 5G ultra- dense network. In: 2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS), pp. 823–830 (2018)

    Google Scholar 

  32. Zhang, Y., Deng, R., Bertino, E., Zheng, D.: Robust and universal seamless handover au- thentication in 5G HetNets. IEEE Trans. Dependable Secure Comput. 1 (2019)

    Google Scholar 

  33. Wang, C., Zhao, Z., Sun, Q., Zhang, H.: Deep learning-based intelligent dual connectivity for mobility management in dense network. In: 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), pp. 1–5 (2018)

    Google Scholar 

  34. Wang, D., Wang, Y., Dong, S., Huang, G., Liu, J., Gao, W.: Exploiting dual connectivity for handover management in heterogeneous aeronautical network. IEEE Access 7, 62938–62949 (2019)

    Article  Google Scholar 

  35. Poirot, V., Ericson, M., Nordberg, M., Andersson, K.: Energy efficient multi-connectivity algorithms for ultra-dense 5G networks. Wirel. Netw. 26(3), 2207–2222 (2020)

    Article  Google Scholar 

  36. Ghatak, G., Sharma, Y., Zaid, K., Rahman, A.U.: Elastic multi-connectivity in 5G networks. Phys. Commun. 43, 101176–101176 (2020)

    Article  Google Scholar 

  37. Mumtaz, T., Muhammad, S., Aslam, M.I., Mohammad, N.: Dual connectivity-based mobility management and data split mechanism in 4G/5G cellular networks. IEEE Access 8, 86495–86509 (2020)

    Article  Google Scholar 

  38. Mohseni, H., Eslamnour, B.: Handover management for delay-sensitive IoT services on wireless software-defined network platforms. In: 2019 3rd International Conference on Internet of Things and Applications (IoT), pp. 1–6 (2019)

    Google Scholar 

  39. Desogus, C., Anedda, M., Murroni, M., Giusto, D.D., Muntean, G.: ReMIoT: reputation- based network selection in multimedia IoT. In: 2019 IEEE Broadcast Symposium (BTS), pp. 1–6 (2019)

    Google Scholar 

  40. Goudarzi, S., Anisi, M.H., Abdullah, A.H., Lloret, J., Soleymani, S.A., Hassan, W.H.: A hybrid intelligent model for network selection in the industrial Internet of Things. Appl. Soft Comput. 74, 529–546 (2019)

    Article  Google Scholar 

  41. Park, H., Lee, Y., Kim, T., Kim, B., Lee, J.: Handover mechanism in NR for ultra-reliable low-latency communications. IEEE Netw. 32(2), 41–47 (2018)

    Article  Google Scholar 

  42. Mahmood, N.H., Lopez, M., Laselva, D., Pedersen, K., Berardinelli, G.: Reliability oriented dual connectivity for URLLC services in 5G new radio. In: 15th International Symposium on Wireless Communication Systems (ISWCS), pp. 1–6 (2018)

    Google Scholar 

  43. Lee, H., Vahid, S., Moessner, K.: Cognitive Radio-Oriented Wireless Networks. CrownCom. Lecture Notes of the Institute for Computer Sciences. Social Informatics and Telecommunications Engineering 291 (2019)

    Google Scholar 

  44. Kumar, N., Kumar, S., Subramaniam, K.: Achieving zero ms handover interruption in new radio with higher throughput using D2D communication. In: 2019 IEEE Wireless Com- munications and Networking Conference (WCNC), pp. 1–8 (2019)

    Google Scholar 

  45. Fan, B., He, Z., Wu, Y., He, J., Chen, Y., Jiang, L.: Deep learning empowered traffic offloading in intelligent software defined cellular V2X networks. IEEE Trans. Veh. Technol. 69(11), 13328–13340 (2020)

    Article  Google Scholar 

  46. Erel-Ozcevik, M., Canberk, B.: Road to 5G Reduced-latency: a software defined handover model for eMBB services. IEEE Trans. Veh. Technol. 68(8), 8133–8144s (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Priya, B., Malhotra, J. (2022). RAT Selection Strategies for Next-Generation Wireless Networks: A Taxonomy and Survey. In: Dua, M., Jain, A.K., Yadav, A., Kumar, N., Siarry, P. (eds) Proceedings of the International Conference on Paradigms of Communication, Computing and Data Sciences. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-16-5747-4_13

Download citation

Publish with us

Policies and ethics