Skip to main content

Ergontropic Dynamics: Contribution for an Extended Particle Dynamics

  • Chapter
  • First Online:
Rhythmic Advantages in Big Data and Machine Learning

Part of the book series: Studies in Rhythm Engineering ((SRE))

  • 347 Accesses

Abstract

A vast concourse of events and phenomena occur in nature that may be interrelated by a entropy-maximization technique that provides a comprehensible explanation of a range of physical problems, integrating in a new framework the universal tendency of energy to a minimum and entropy to a maximum. The outcome is a modification of Newton’s dynamical equation of motion, grounding the principles of mechanics on the concepts of energy and entropy, instead on the usual definition of force, integrating into a consistent framework the description of translation and vortical motion. The new method offers a fresh approach to traditional problems and can be applied with advantage in the solution of variational problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pinheiro MJ (2013) A variational method in out-of-equilibrium physical systems. Sci Rep 3. Article number: 3454. https://doi.org/10.1038/srep03454

  2. Landau L, Lifchitz E (1967) Physique statistique. Editions MIR, Moscou, p 48

    Google Scholar 

  3. Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106(4):620–630

    Article  MathSciNet  Google Scholar 

  4. Pinheiro MJ (2002) Europhys Lett 57:305

    Google Scholar 

  5. Pinheiro MJ (2004) Phys Scr 70(2–3):86

    Google Scholar 

  6. Peterson MA (1979) Analogy between thermodynamics and mechanics. Am J Phys 47(6):488

    Google Scholar 

  7. Pavlov VP, Sergeev VM (2008) Thermodynamics from the differential geometry standpoint. Theor Math Phys 157(1):1484

    Article  MathSciNet  Google Scholar 

  8. Lavende BH (1974) Principles and representations of nonequilibrium thermodynamics. Phys Rev A 9(2):929

    Article  Google Scholar 

  9. Glansdorff P, Prigogine I (1971) Structure, stabilité et fluctuations. Masson Éditeurs, Paris

    MATH  Google Scholar 

  10. Young RH (1976) Am J Phys 44(6):581–586

    Google Scholar 

  11. Truesdell CA (1952) J Appl Math Phys (ZAMP) 3:79. https://doi.org/10.1007/BF02008449

  12. Lamb H (1920) Higher mechanics. Cambridge University Press, London

    MATH  Google Scholar 

  13. Curtiss CF (1956) Kinetic theory of nonspherical molecules. J Chem Phys 24(2):225–241

    Article  MathSciNet  Google Scholar 

  14. Khinchin AI (1949) Mathematical foundations of statistical mechanics. Dover Publications, New York

    MATH  Google Scholar 

  15. Liboff RL (1990) Kinetic theory: classical, quantum, and relativistic descriptions. Prentice-Hall, New Jersey

    Google Scholar 

  16. Huang K (1987) Statistical mechanics. Wiley, Hoboken

    MATH  Google Scholar 

  17. Gary SP (1993) Theory of space plasma microinstabilities. Cambridge University Press, Cambridge

    Book  Google Scholar 

  18. Stacey WM (2005) Fusion plasma physics. Wiley-VCH, Weinheim

    Book  Google Scholar 

  19. Kiehn RM (2007) Topological torsion and topological spin. Ann Fond L de Broglie bf 32:389–408

    Google Scholar 

  20. Onoochin V, Phipps TE Jr (2003) On an additional magnetic force present in a system of coaxial solenoids. Eur J Elect Phen 3:256

    MATH  Google Scholar 

  21. Altgilbers LL et al (2000) Magnetocumulative generators. Springer, New York

    Google Scholar 

  22. Steinhauer LC, Ishida A (1997) Phys Rev Lett 79(18):3423

    Google Scholar 

  23. Klajn A (1999) Switching vacuum arc in a pulsed transverse magnetic field. IEEE Trans Plasma Sci 27(4):977

    Article  Google Scholar 

  24. Flurscheim CH (ed) (1985) Power circuit breaker: theory and, design. Peter Peregrinus, London

    Google Scholar 

  25. Boxman RL, Martin PJ, Sanders D (1995) Handbook of vacuum arc science and technology: fundamentals and applications. Noyes Publications, New Jersey

    Google Scholar 

  26. James DR (1962) An experimental examination of retrograde motion of an electric arc. PhD dissertation, Wright-Patterson Air Force Base, Ohio

    Google Scholar 

  27. Younian W, Tengcai M (1990) Investigation of electric conductivity of plasma in magnetic rotating arc. In: Solonenko OP, Fedorchenko AI (eds) Plasma jets in the development of new materials technology, VSP BV, The Netherlands, pp 27–32

    Google Scholar 

  28. Boóirevich V, Freibergs Ya, Shilova EI, Shcherbinin EV (1989) Electrically induced vortical flows. Kluwer Academic Publishsers, Dordrecht

    Google Scholar 

  29. Chow KC, Chan KL (2003) Angular momentum transports by moving spiral waves. J Atmos Sci 60:2004–2009

    Article  MathSciNet  Google Scholar 

  30. Schubert G, Whitehead JA (1969) Moving flame experiment with liquid mercury: possible implications for the Venus atmosphere. Science, New Series 163:71–72

    Google Scholar 

  31. Chandrasekar S (1989) Selected papers, vol 4. In: Plasma physics, hydrodynamic and hydromagnetic stability, and applications of the tensor-virial theorem. University of Chicago Press, Chicago

    Google Scholar 

  32. Douglas HA, Mason PJ, Hinch EJ (1972) Motion due to a moving internal heat source. J Fluid Mech 54:469–480

    Article  Google Scholar 

  33. Stern ME (1971) Generalizations of the rotating flame effect. Tellus XXIII:122–128

    Google Scholar 

  34. de Ruiter AH, Dameren C, Forbes JR (2013) Spacecraft dynamics and control: an introduction. Wiley, West Sussex

    Google Scholar 

  35. Anderson JD, Campbell JK, Ekelund JE, Ellis J, Jordan JF (2008) Phys Rev Lett 100:091102

    Google Scholar 

  36. Verlinde EP (2011) On the origin of gravity and the laws of Newton. JHEP 1104:029 [arXiv:1001.0785 [hep-th]]

    Article  MathSciNet  Google Scholar 

  37. Kobakhidze A (2011) Once more: gravity is not an entropic force. arXiv:1108.4161

Download references

Acknowledgements

The author gratefully acknowledge partial financial support by the International Space Science Institute (ISSI) in Bern, Switzerland, as visiting scientist, and express special thanks to Professor Roger-Maurice Bonnet, Dr. Edouard Mendès Pereira, Prof. Rafael Rodrigo, Dr. Maurizio Falanga, and Dr. Rui Ribeiro, for their friendship and support. We acknowledge kind permission to Springer Nature Group and Elsevier, to publish part of the material shown authored by myself and made public via Open Access.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario J. Pinheiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pinheiro, M.J. (2022). Ergontropic Dynamics: Contribution for an Extended Particle Dynamics. In: Bandyopadhyay, A., Ray, K. (eds) Rhythmic Advantages in Big Data and Machine Learning . Studies in Rhythm Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-5723-8_3

Download citation

Publish with us

Policies and ethics