Skip to main content

Modulating Neural Oscillations with Transcranial Focused Ultrasound

  • Chapter
  • First Online:
Rhythmic Advantages in Big Data and Machine Learning

Part of the book series: Studies in Rhythm Engineering ((SRE))

  • 541 Accesses

Abstract

Neurons generate oscillatory activity that spans multiple frequencies, anatomical locations, and scales. Ever since their discovery almost 100 years ago, brain rhythms have fascinated scientists, but there is no clear consensus about their role in brain function and behavior. Accumulating evidence suggests that brain oscillations provide the mechanism for neurons to coordinate their activity in time and across the brain’s networks. These oscillations, it is argued, act as conductors or timekeepers so functional neural units can orchestrate their activity and share information. However, many questions remain open about neural rhythms and whether they play a causal role in brain function and behavior. This chapter will explore how developments in noninvasive brain stimulation, especially ultrasonic neuromodulation, can advance our understanding of brain oscillations and their causal role in brain function and behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Badran BW, Caulfield KA, Stomberg-Firestein S, Summers PM, Dowdle LT, Savoca M, Li X, Austelle CW, Short EB, Borckardt JJ (2020) Sonication of the anterior thalamus with MRI-Guided transcranial focused ultrasound (tFUS) alters pain thresholds in healthy adults: A double-blind, sham-controlled study. Brain Stimul 13:1805–1812

    Article  Google Scholar 

  2. Başar E, Başar-Eroglu C, Karakaş S, Schürmann M (2000) Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol 39:241–248. https://doi.org/10.1016/S0167-8760(00)00145-8

    Article  Google Scholar 

  3. Berger H (1929) Uber das elektrenkephalogramm des menschen. Arch Psychiatr Nervenkr 87:527–570

    Article  Google Scholar 

  4. Bertazzoli G, Esposito R, Mutanen TP, Ferrari C, Ilmoniemi RJ, Miniussi C, Bortoletto M (2021) The impact of artifact removal approaches on TMS–EEG signal. bioRxiv

    Google Scholar 

  5. Blackmore J, Shrivastava S, Sallet J, Butler CR, Cleveland RO (2019) Ultrasound neuromodulation: a review of results, mechanisms and safety. Ultrasound Med Biol. https://doi.org/10.1016/j.ultrasmedbio.2018.12.015

  6. Brasil-Neto JP (2012) Learning, memory, and transcranial direct current stimulation. Front Psychiatry 3. https://doi.org/10.3389/fpsyt.2012.00080

  7. Buzsáki G, Watson BO (2012) Brain rhythms and neural syntax: Implications for efficient coding of cognitive content and neuropsychiatric disease. Dialogues Clin Neurosci. https://doi.org/10.31887/dcns.2012.14.4/gbuzsaki

  8. Cao Y, Lopatkin A, You L (2016) Elements of biological oscillations in time and space. Nat Struct Mol Biol. https://doi.org/10.1038/nsmb.3320

    Article  Google Scholar 

  9. Ching S, Cimenser A, Purdon PL, Brown EN, Kopell NJ (2010) Thalamocortical model for a propofol-induced α-rhythm associated with loss of consciousness. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1017069108

    Article  Google Scholar 

  10. Choi JB, Lim SH, Cho KW, Kim DH, Jang DP, Kim IY (2013) The effect of focused ultrasonic stimulation on the activity of hippocampal neurons in multi-channel electrode. In: International IEEE/EMBS conference on neural engineering, NER. https://doi.org/10.1109/NER.2013.6696038

  11. Dallapiazza RF, Timbie KF, Holmberg S, Gatesman J, Lopes MB, Price RJ, Miller GW, Elias WJ (2017) Noninvasive neuromodulation and thalamic mapping with low-intensity focused ultrasound. J Neurosurg. https://doi.org/10.3171/2016.11.JNS16976

    Article  Google Scholar 

  12. Darvas F, Mehić E, Caler CJ, Ojemann JG, Mourad PD (2016) Toward deep brain monitoring with superficial EEG sensors plus neuromodulatory focused ultrasound. Ultrasound Med Biol 42(8):1834–1847. https://doi.org/10.1016/j.ultrasmedbio.2016.02.020

  13. Deffieux T, Younan Y, Wattiez N, Tanter M, Pouget P, Aubry JF (2013) Low-intensity focused ultrasound modulates monkey visuomotor behavior. Curr Biol. https://doi.org/10.1016/j.cub.2013.10.029

    Article  Google Scholar 

  14. DeWeerdt S (2019) How to map the brain. Nature 571:S6–S6

    Article  Google Scholar 

  15. Fini M, Tyler WJ (2017) Transcranial focused ultrasound: a new tool for non-invasive neuromodulation. Int Rev Psychiatry. https://doi.org/10.1080/09540261.2017.1302924

  16. Foxe JJ, Snyder AC (2011) The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Front Psychol 2:154. https://doi.org/10.3389/fpsyg.2011.00154

  17. Fry FJ, Ades HW, Fry WJ (1958) Production of reversible changes in the central nervous system by ultrasound. Science 80. https://doi.org/10.1126/science.127.3289.83

  18. Griffiths BJ, Mayhew SD, Mullinger KJ, Jorge J, Charest I, Wimber M, Hanslmayr S (2019) Alpha/beta power decreases track the fidelity of stimulus-specific information. Elife 8:e49562

    Google Scholar 

  19. Griškova I, Rukšenas O, Dapšys K, Herpertz S, Höppner J (2007) The effects of 10 Hz repetitive transcranial magnetic stimulation on resting EEG power spectrum in healthy subjects. Neurosci Lett. https://doi.org/10.1016/j.neulet.2007.04.030

    Article  Google Scholar 

  20. Grossman N, Bono D, Dedic N, Kodandaramaiah SB, Rudenko A, Suk HJ, Cassara AM, Neufeld E, Kuster N, Tsai LH, Pascual-Leone A, Boyden ES (2017) Noninvasive deep brain stimulation via temporally interfering electric fields. Cell. https://doi.org/10.1016/j.cell.2017.05.024

  21. Hameroff S, Trakas M, Duffield C, Annabi E, Gerace MB, Boyle P, Lucas A, Amos Q, Buadu A, Badal JJ (2013) Transcranial ultrasound (TUS) effects on mental states: A pilot study. Brain Stimul 6:409–415. https://doi.org/10.1016/j.brs.2012.05.002

    Article  Google Scholar 

  22. Harvey E (1929) The effect of high frequency sound waves on heart muscle and other irritable tissues. Am J Physiol 91:284–290

    Article  Google Scholar 

  23. Helfrich RF, Schneider TR, Rach S, Trautmann-Lengsfeld SA, Engel AK, Herrmann CS (2014) Entrainment of brain oscillations by transcranial alternating current stimulation. Curr Biol. https://doi.org/10.1016/j.cub.2013.12.041

    Article  Google Scholar 

  24. Herrmann CS, Rach S, Neuling T, Strüber D (2013) Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front Hum Neurosci 7:1–13. https://doi.org/10.3389/fnhum.2013.00279

    Article  Google Scholar 

  25. Herrmann CS, Strüber D, Helfrich RF, Engel AK (2016) EEG oscillations: From correlation to causality. Int J Psychophysiol. https://doi.org/10.1016/j.ijpsycho.2015.02.003

    Article  Google Scholar 

  26. Huerta PT, Volpe BT (2009) Transcranial magnetic stimulation, synaptic plasticity and network oscillations. J Neuroeng Rehabil. https://doi.org/10.1186/1743-0003-6-7

    Article  Google Scholar 

  27. Jin Y, Potkin SG, Kemp AS, Huerta ST, Alva G, Thai TM, Carreon D, Bunney WE (2006) Therapeutic effects of individualized alpha frequency transcranial magnetic stimulation (αTMS) on the negative symptoms of schizophrenia. Schizophr Bull 32:556–561. https://doi.org/10.1093/schbul/sbj020

    Article  Google Scholar 

  28. Jülicher F (2001) Mechanical oscillations at the cellular scale. Comptes Rendus l’Academie des Sci Ser. IV Phys Astrophys. https://doi.org/10.1016/S1296-2147(01)01228-8

  29. Karabanov AN, Saturnino GB, Thielscher A, Siebner HR (2019) Can transcranial electrical stimulation localize brain function? Front Psychol. https://doi.org/10.3389/fpsyg.2019.00213

    Article  Google Scholar 

  30. Kelly SP, Gomez-Ramirez M, Foxe JJ (2008) Spatial attention modulates initial afferent activity in human primary visual cortex. Cereb Cortex 18:2629–2636. https://doi.org/10.1093/cercor/bhn022

    Article  Google Scholar 

  31. Kim H, Park MY, Lee SD, Lee W, Chiu A, Yoo SS (2015) Suppression of EEG visual-evoked potentials in rats through neuromodulatory focused ultrasound. NeuroReport. https://doi.org/10.1097/WNR.0000000000000330

    Article  Google Scholar 

  32. King RL, Brown JR, Newsome WT, Pauly KB (2013) Effective parameters for ultrasound-induced in vivo neurostimulation. Ultrasound Med Biol 39:312–331. https://doi.org/10.1016/j.ultrasmedbio.2012.09.009

    Article  Google Scholar 

  33. Kirschstein T, Köhling R (2009) What is the source of the EEG? Clin EEG Neurosci. https://doi.org/10.1177/155005940904000305

    Article  Google Scholar 

  34. Klimesch W, Sauseng P, Hanslmayr S (2007) EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev 53:63–88. https://doi.org/10.1016/j.brainresrev.2006.06.003

    Article  Google Scholar 

  35. Krasovitski B, Frenkel V, Shoham S, Kimmel E (2011) Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc Natl Acad Sci 108:3258–3263. https://doi.org/10.1073/pnas.1015771108

    Article  Google Scholar 

  36. Kubanek J (2018) Neuromodulation with transcranial focused ultrasound. Neurosurg Focus 44:E14. https://doi.org/10.3171/2017.11.FOCUS17621

    Article  Google Scholar 

  37. Kubanek J, Shi J, Marsh J, Chen D, Deng C, Cui J (2016) Ultrasound modulates ion channel currents. Sci Rep 6:1–14. https://doi.org/10.1038/srep24170

    Article  Google Scholar 

  38. Lee W, Chung YA, Jung Y, Song IU, Yoo SS (2016a) Simultaneous acoustic stimulation of human primary and secondary somatosensory cortices using transcranial focused ultrasound. BMC Neurosci. https://doi.org/10.1186/s12868-016-0303-6

  39. Lee W, Lee SD, Park MY, Foley L, Purcell-Estabrook E, Kim H, Fischer K, Maeng LS, Yoo SS (2016b) Image-guided focused ultrasound-mediated regional brain stimulation in sheep. Ultrasound Med Biol. https://doi.org/10.1016/j.ultrasmedbio.2015.10.001

  40. Legon W, Adams S, Bansal P, Patel PD, Hobbs L, Ai L, Mueller JK, Meekins G, Gillick BT (2020) A retrospective qualitative report of symptoms and safety from transcranial focused ultrasound for neuromodulation in humans. Sci Rep. https://doi.org/10.1038/s41598-020-62265-8

  41. Legon W, Ai L, Bansal P, Mueller JK (2018) Neuromodulation with single-element transcranial focused ultrasound in human thalamus. Hum Brain Mapp. https://doi.org/10.1002/hbm.23981

    Article  Google Scholar 

  42. Legon W, Sato TF, Opitz A, Mueller J, Barbour A, Williams A, Tyler WJ (2014) Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci 17:322–329. https://doi.org/10.1038/nn.3620

    Article  Google Scholar 

  43. Logan RW, McClung CA (2019) Rhythms of life: circadian disruption and brain disorders across the lifespan. Nat Rev Neurosci. https://doi.org/10.1038/s41583-018-0088-y

    Article  Google Scholar 

  44. Manuel TJ, Kusunose J, Zhan X, Lv X, Kang E, Yang A, Xiang Z, Caskey CF (2020) Ultrasound neuromodulation depends on pulse repetition frequency and can modulate inhibitory effects of TTX. Sci Rep https://doi.org/10.1038/s41598-020-72189-y

  45. Mathewson KE, Lleras A, Beck DM, Fabiani M, Ro T, Gratton G (2011) Pulsed out of awareness: EEG alpha oscillations represent a pulsed-inhibition of ongoing cortical processing. Front Psychol 2:99. https://doi.org/10.3389/fpsyg.2011.00099

    Article  Google Scholar 

  46. McDermott TJ, Wiesman AI, Mills MS, Spooner RK, Coolidge NM, Proskovec AL, Heinrichs-Graham E, Wilson TW (2019) tDCS modulates behavioral performance and the neural oscillatory dynamics serving visual selective attention. Hum Brain Mapp. https://doi.org/10.1002/hbm.24405

    Article  Google Scholar 

  47. Mehić E, Xu JM, Caler CJ, Coulson NK, Moritz CT, Mourad PD (2014) Increased anatomical specificity of neuromodulation via modulated focused ultrasound. PLoS ONE. https://doi.org/10.1371/journal.pone.0086939

    Article  Google Scholar 

  48. Monti MM, Schnakers C, Korb AS, Bystritsky A, Vespa PM (2016) Non-invasive ultrasonic thalamic stimulation in disorders of consciousness after severe brain injury: a first-in-man report. Brain Stimul 9:940–941. https://doi.org/10.1016/j.brs.2016.07.008

  49. Mueller J, Legon W, Opitz A, Sato TF, Tyler WJ (2014) Transcranial focused ultrasound modulates intrinsic and evoked EEG dynamics. Brain Stimul 7:900–908. https://doi.org/10.1016/j.brs.2014.08.008

    Article  Google Scholar 

  50. Pashaei V, Dehghanzadeh P, Enwia G, Bayat M, Majerus SJA, Mandal S (2020) Flexible body-conformal ultrasound patches for image-guided neuromodulation. IEEE Trans Biomed Circuits Syst. https://doi.org/10.1109/TBCAS.2019.2959439

  51. Reznik SJ, Sanguinetti JL, Allen JJB (n.d.) Transcranial ultrasound (TUS) reduces worry in a five-day double-blind pilot study. Change 6:10

    Google Scholar 

  52. Romei V, Bauer M, Brooks JL, Economides M, Penny W, Thut G, Driver J, Bestmann S (2016) Causal evidence that intrinsic beta-frequency is relevant for enhanced signal propagation in the motor system as shown through rhythmic TMS. Neuroimage. https://doi.org/10.1016/j.neuroimage.2015.11.020

    Article  Google Scholar 

  53. Romei V, Gross J, Thut G (2010) On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: Correlation or causation? J Neurosci. https://doi.org/10.1523/JNEUROSCI.0160-10.2010

    Article  Google Scholar 

  54. Roth, B.J., Saypol, J.M., Hallett, M., Cohen, L.G., 1991. A theoretical calculation of the electric field induced in the cortex during magnetic stimulation. Electroencephalogr. Clin. Neurophysiol. Evoked Potentials. https://doi.org/10.1016/0168-5597(91)90103-5

  55. Sanguinetti JL, Hameroff S, Smith EE, Sato T, Daft CMW, Tyler WJ, Allen JJB (2020) Transcranial focused ultrasound to the right prefrontal cortex improves mood and alters functional connectivity in humans. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2020.00052

  56. Sato T, Shapiro MG, Tsao DY (2018) Ultrasonic neuromodulation causes widespread cortical activation via an indirect auditory mechanism. Neuron 98:1031–1041.e5. https://doi.org/10.1016/j.neuron.2018.05.009

  57. Siegel M, Donner TH, Engel AK (2012) Spectral fingerprints of large-scale neuronal interactions. Nat Rev Neurosci. https://doi.org/10.1038/nrn3137

    Article  Google Scholar 

  58. Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron. https://doi.org/10.1016/S0896-6273(00)80821-1

    Article  Google Scholar 

  59. Snyder AC, Foxe JJ (2010) Anticipatory attentional suppression of visual features indexed by oscillatory alpha-band power increases: a high-density electrical mapping study. J Neurosci 30:4024–4032. https://doi.org/10.1523/JNEUROSCI.5684-09.2010

    Article  Google Scholar 

  60. Strüber D, Rach S, Trautmann-Lengsfeld SA, Engel AK, Herrmann CS (2014) Antiphasic 40 Hz oscillatory current stimulation affects bistable motion perception. Brain Topogr. https://doi.org/10.1007/s10548-013-0294-x

    Article  Google Scholar 

  61. Thut G (2014) Modulating brain oscillations to drive brain function. PLoS Biol. https://doi.org/10.1371/journal.pbio.1002032

  62. Thut G, Miniussi C, Gross J (2012) The functional importance of rhythmic activity in the brain. Curr Biol. https://doi.org/10.1016/j.cub.2012.06.061

    Article  Google Scholar 

  63. Thut G, Schyns PG, Gross J (2011a) Entrainment of perceptually relevant brain oscillations by non-invasive rhythmic stimulation of the human brain. Front Psychol. https://doi.org/10.3389/fpsyg.2011.00170

  64. Thut G, Veniero D, Romei V, Miniussi C, Schyns P, Gross J (2011b) Rhythmic TMS causes local entrainment of natural oscillatory signatures. Curr Biol. https://doi.org/10.1016/j.cub.2011.05.049

  65. Tufail Y, Matyushov A, Baldwin N, Tauchmann ML, Georges J, Yoshihiro A, Tillery SIH, Tyler WJ (2010) Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron 66:681–694. https://doi.org/10.1016/j.neuron.2010.05.008

  66. Tyler WJ (2011a) Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis. Neuroscientist 17:25-29

    Google Scholar 

  67. Tyler WJ (2011b) Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis. Neuroscientist 17:25–36. https://doi.org/10.1177/1073858409348066

  68. Tyler WJ, Tufail Y, Finsterwald M, Tauchmann ML, Olson EJ, Majestic C (2008) Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound. PLoS ONE 3. https://doi.org/10.1371/journal.pone.0003511

  69. Varone G, Hussain Z, Sheikh Z, Howard A, Boulila W, Mahmud M, Howard N, Morabito FC, Hussain A (2021) Real-time artifacts reduction during TMS-EEG co-registration: A comprehensive review on technologies and procedures. Sensors (Switzerland). https://doi.org/10.3390/s21020637

    Article  Google Scholar 

  70. Velling VA, Shklyaruk SP (1988) Modulation of the functional state of the brain with the aid of focused ultrasonic action. Neurosci Behav Physiol. https://doi.org/10.1007/BF01193880

    Article  Google Scholar 

  71. Vosskuhl J, Strüber D, Herrmann CS (2018) Non-invasive Brain Stimulation: A Paradigm Shift in Understanding Brain Oscillations. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2018.00211

    Article  Google Scholar 

  72. Wang XJ (2010) Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev. https://doi.org/10.1152/physrev.00035.2008

    Article  Google Scholar 

  73. Yang H, Yuan Y, Wang X, Li X (2020) Closed-Loop Transcranial Ultrasound Stimulation for Real-Time Non-invasive Neuromodulation in vivo. Front Neurosci 14

    Google Scholar 

  74. Yoo SS, Bystritsky A, Lee JH, Zhang Y, Fischer K, Min BK, McDannold NJ, Pascual-Leone A, Jolesz FA (2011a) Focused ultrasound modulates region-specific brain activity. Neuroimage 56:1267–1275. https://doi.org/10.1016/j.neuroimage.2011.02.058

  75. Yoon K, Lee W, Lee JE, Xu L, Croce P, Foley L, Yoo SS (2019) Effects of sonication parameters on transcranial focused ultrasound brain stimulation in an ovine model. PLoS ONE. https://doi.org/10.1371/journal.pone.0224311

    Article  Google Scholar 

  76. Yuan Y, Lu CB, Li XL (2015) Effect of focused ultrasound stimulation at different ultrasonic power levels on the local field potential power spectrum. Chinese Phys B. https://doi.org/10.1088/1674-1056/24/8/088704

    Article  Google Scholar 

  77. Yuan Y, Yan J, Ma Z, Li X (2016) Noninvasive focused ultrasound stimulation can modulate phase-amplitude coupling between neuronal oscillations in the rat hippocampus. Front Neurosci. https://doi.org/10.3389/fnins.2016.00348

    Article  Google Scholar 

Download references

Acknowledgements

I owe my deep gratitude to Dr. Natalie Bryant for her careful reading and many helpful comments of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph L. Sanguinetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanguinetti, J.L. (2022). Modulating Neural Oscillations with Transcranial Focused Ultrasound. In: Bandyopadhyay, A., Ray, K. (eds) Rhythmic Advantages in Big Data and Machine Learning . Studies in Rhythm Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-5723-8_2

Download citation

Publish with us

Policies and ethics