Skip to main content

A Review of Flying Robot Applications in Healthcare

  • Chapter
  • First Online:
Smart Healthcare Analytics: State of the Art

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 213))

Abstract

Flying robots or Drones are materializing as an innovative curative aid that can alleviate logistic and delivery problems of health care aids to hard to access areas, transport of microbiological, laboratory samples, pharmaceuticals, vaccines, emergency equipment’s, Telemedicine’s, clinical care, etc. The contemporary health care system of the present decade is focused to improve the quality of people’s lives by using advanced technology. This chapter reviews different literature and discuss various applications of flying robot in the health care system and medical-related issues used worldwide. Flying robot is acting as a boon to health care service providers especially in pandemic situations to improve their efficiency. Further an extensive study has been done to represents different areas where the flying robot can be used in the health care sector to modernize our medical sector using disruptive technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Johnson, E.N., Feron, E.: Aerial robotics. In: Springer Handbook of Robotics, pp. 1010–1013 (2008)

    Google Scholar 

  2. Delatte, D., Takeishi, N., Yairi, T., Liew, C.F.: Recent Developments in Aerial Robotics: A Survey and Prototypes Overview, pp. 1–3 (2017). https://arxiv.org/pdf/1711.10085.pdf

  3. Abdelkef, A., Hassanalian, M.: Classifications, applications, and design challenges of drones: a review. In: Progress in Aerospace Sciences, pp. 99–131. Elsevier (2017)

    Google Scholar 

  4. Elloumi, M., Dhaou, R., Escrig, B., Idoudi, H., Saidane, L.A.: Monitoring road traffic with a UAV-based system. Conference Paper, pp. 2–4, April 2018

    Google Scholar 

  5. Murphy, R.R., Gandudi, V.B.M., Adams, J.: Applications of Robots for COVID-19 Response (2020). arXiv:2008.06976

  6. Rosser Jr., J.C., Vignesh, V.: Surgical and medical applications of drones: a comprehensive review. JSLS 3 (2018)

    Google Scholar 

  7. Boutilier, J.J., Brooks, S.C., Janmohamed, A., Byers, A., Chan, T.C.: Optimizing a drone network to deliver automated external defibrillators. Circulation 2454–2465 (2017)

    Google Scholar 

  8. Bogle, B., Rosamond, W.D., Snyder, K.T., Zègre-Hemsey, J.K.: The case for drone-assisted emergency response to cardiac arrest. N. C. Med. J. 80, 204–212 (2019)

    Google Scholar 

  9. Konert, A., Smereka, J., Szarpak, L.: The use of drones in emergency medicine: practical and legal aspects. Emerg. Med. Int. 3589792 (2019)

    Google Scholar 

  10. Kangunde, V., Jamisola Jr., R.S., Theophilus, E.K.: A review on drones controlled in real time. Int. J. Dyn. Control 1–2 (2021)

    Google Scholar 

  11. Kim, S.J., Lim, G.J., Cho, J., Côté, M.J.: Drone-aided healthcare services for patients with chronic diseases in rural areas. J. Intell. Robot. Syst. Theory Appl. 88, 163–180 (2017)

    Article  Google Scholar 

  12. Amukele, T.K., Hernandez, J., Snozek, C.L.H., et al.: Drone transport of chemistry and hematology samples over long distances. Am. J. Clin. Pathol. 148(5), 427–435 (2017)

    Article  Google Scholar 

  13. Hampson, M.: Drone Delivers Human Kidney: The Organ Was Flown Several Kilometers by a Drone Without Incurring Damage, pp.7–9. IEEE (2019)

    Google Scholar 

  14. Amukele, T., Ness, P.M., Tobian, A.A., Boyd, J., Street, J.: Drone transportation of blood products. Transfusion 57(3), 582–588 (2017)

    Google Scholar 

  15. Braun, J., Gertz, S.D., Furer, A., et al.: The promising future of drones in prehospital medical care and its application to battlefield medicine. J. Trauma Acute Care Surg. 87, S28–S34 (2019)

    Article  Google Scholar 

  16. Erdelj, M., Natalizio, E.: UAV-assisted disaster management: applications and open issues. In: International Conference on Computing, Networking and Communications, Feb 2016, pp. 978–981 (2016)

    Google Scholar 

  17. Bartoli, G., Fantacci, R., Gei, F., Marabissi, D., Micciullo, L.: A novel emergency management platform for smart public safety. Int. J. Commun. Syst. (2015)

    Google Scholar 

  18. Watts, A., Ambrosia, V., Hinkley, E.: Unmanned aircraft systems in remote sensing and scientific research: classification and considerations of use. Remote Sens. 1671–1692 (2012)

    Google Scholar 

  19. Burgués, J., Marco, S.: Environmental chemical sensing using small drones: a review. Sci. Total Environ. (Elsevier) 748, 1–2 (2020)

    Google Scholar 

  20. Martin, P.G., Payton, O.D., Fardoulis, J.S., Richards, D.A., Scott, T.B.: The use of unmanned aerial systems for the mapping of legacy uranium mines. J. Environ. Radioact. 143, 135–140 (2015)

    Article  Google Scholar 

  21. Balasingam, M.: Drones in medicine—the rise of the machines. Int. J. Clin. Pract. 9 (2017)

    Google Scholar 

  22. Carrillo-Larco, R.M., Moscoso-Porras, M., Taype-Rondan, A., Ruiz-Alejos, A., Bernabe-Ortiz, A.: The use of unmanned aerial vehicles for health purposes: a systematic review of experimental studies. Glob. Health Epidemiol. Genom. 3 (2018)

    Google Scholar 

  23. Treter, S., Perrier, N., Sosa, J.A., Roman, S.: Telementoring: a multi-institutional experience with the introduction of a novel surgical approach for adrenalectomy. Ann. Surg. Oncol. 2754–2758 (2013)

    Google Scholar 

  24. Snyderman, C.H., Gardner, P.A., Lanisnik, B., Ravnik, J.: Surgical telementoring: a new model for surgical training. Laryngoscope 1334–1338 (2016)

    Google Scholar 

  25. Shinghal, K., Saxena, A.: Tele-healthcare system: a robotic drone case study. Int. J. Biosens. Bioelectron. 7(2), 41–45 (2021)

    Google Scholar 

  26. Zhao, L., Ma, Y., Yang, G., Meng, Q.: Research on development and application of tele-medicine. In: 2010 International Conference on Computer and Communication Technologies in Agriculture Engineering, pp. 347–350. IEEE (2010)

    Google Scholar 

  27. Chand, R.D., Kumar, A., Kumar, A., Tiwari, P., Rajnish, R., Mishra, S.K.: Advanced communication technologies for collaborative learning in telemedicine and tele-care. In: 9th International Conference on Cloud Computing, Data Science & Engineering, pp. 601–605 (2019)

    Google Scholar 

  28. Khan, Z.H., Siddique, A., Lee, C.W.: Robotics utilization for healthcare digitization in global COVID-19 management. Int. J. Res. Public Health 17(11), 3819 (2020)

    Google Scholar 

  29. Murphy, R.R.: Robots and pandemics in science fiction. Sci. Robot. 5 (2020)

    Google Scholar 

  30. Salvoa, G., Carusoa, L., Scordoa, A.: Urban traffic analysis through a UAV. In: EWGT2013—16th Meeting of the EURO Working Group on Transportation, pp. 1083–1091 (2014)

    Google Scholar 

  31. Coifman, B., McCord, M., Mishalani, R.G.: Roadway Traffic Monitoring from an Unmanned Aerial Vehicle

    Google Scholar 

  32. Andrasto, T., Arief, U.M., Subiyanto, Sukamta, S., Sulistyawan, V.N., Sarwono, E., Alfian, A.A., Wicaksono, P., Amelia, P.N., Putra, A.D.H.: The effectiveness of disinfectant spraying based on drone technology. In: IOP Conference Series, 9th Engineering International Conference, 24 September 2020, Indonesia, pp. 1–2 (2020)

    Google Scholar 

  33. Mesar, T., Lessig, A., King, D.R.: Use of drone technology for delivery of medical supplies during prolonged field care. J. Spec. Oper. Med. 18(4), 34–35 (2018)

    Google Scholar 

  34. Drones for vaccines: ICMR seeks bids, Telangana explores ‘Medicines from the sky’, article from The Indian Express, June 15, 2021. https://indianexpress.com/article/business/drones-for-vaccines-icmr-seeks-bids-telangana-explores-medicines-from-sky-7359316/

  35. Government of India, Office of the Director-General of Civil Aviation: Public Notice—Use of Unmanned Aerial Vehicle (UAV)/Unmanned Aircraft Systems (UAS) for Civil Applications, 7 October 2014

    Google Scholar 

  36. Mirri, S., Prandi, C., Salomoni, P.: Human-drone interaction: state of the art, open issues and challenges. In: Conference: The ACM SIGCOMM 2019 Workshop, August 2019, pp. 43–46 (2019)

    Google Scholar 

  37. Gul, F., Rahiman, W., Alhady, S.S.N.: A comprehensive study for robot navigation techniques. Cogent Eng. J. 5–12 (2019). ISSN: (Print) 2331-1916 (Online)

    Google Scholar 

  38. Belmonte, L.M., Morales, R., Fernández-Caballero, A.: Computer vision in autonomous unmanned aerial vehicles—a systematic mapping study. Appl. Sci. 9(15), 3196, 1–13 (2019)

    Google Scholar 

  39. Forsmo, E.J.: Optimal Path Planning for Unmanned Aerial Systems, p. 6. MSC Thesis, Norwegian University of Science and Technology

    Google Scholar 

  40. Mannar, S., Thummalapeta, M., Saksena, S.K., Omkar, S.N.: Vision-Based Control for Aerial Obstacle Avoidance in Forest Environments. Science direct, IFAC PapersOnLine, pp. 480–485 (2018)

    Google Scholar 

  41. Lin, H.-C., Li, L.-L., Lee, V.C.S.: Multiple autonomous robots coordination and navigation. Hindawi J. Robot. 2 (2019)

    Google Scholar 

  42. Dayananda, K.R., Gomes, R., Straub, J.: An interconnected architecture for an emergency medical response unmanned aerial system. In: Proceedings of the 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC) USA, 17–21 September 2017

    Google Scholar 

  43. Parida, S., Nayak, S.C., Priyadarshi, P., Pattnaik, P.K., Ray, G.: Design and analysis of parallel task scheduling algorithm. Adv. Electron. Commun. Comput. 765–776 (2018)

    Google Scholar 

  44. Nayak, S.C., Parida, S., Tripathy, C., Pattnaik, P.K.: An enhanced deadline constraint-based task scheduling mechanism for cloud environment. J. King Saud Univ. Comput. Inf. Sci. 2–4 (2018)

    Google Scholar 

  45. Kamlesh, S.S., Mishra, R.: Advance path simulation of a 5R robotic arm for CT guided medical procedures. Mater. Today: Proc. 5(2), Part 1, 6149–6156 (2018)

    Google Scholar 

  46. Ghosh, T., Roy, A., Mishra, R., Kamlesh, S.S.: Structural optimization of a CT guided robotic arm based on static analysis. Mater. Today: Proc. 19586–19593 (2018)

    Google Scholar 

  47. Mohapatra, M., Mishra, R.: Modern and integrated approach for safety issues in healthcare during covid-19. Ilkogr. Online 20(5), 1029–1034 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maity, R., Mishra, R., Pattnaik, P.K. (2022). A Review of Flying Robot Applications in Healthcare. In: Pattnaik, P.K., Vaidya, A., Mohanty, S., Mohanty, S., Hol, A. (eds) Smart Healthcare Analytics: State of the Art. Intelligent Systems Reference Library, vol 213. Springer, Singapore. https://doi.org/10.1007/978-981-16-5304-9_8

Download citation

Publish with us

Policies and ethics