Skip to main content

SARS-CoV-2 Zoonotic Potential: Current Knowledge and Hypotheses

  • Chapter
  • First Online:
SARS-CoV-2 and Coronacrisis

Abstract

SARS-CoV-2 zoonotic potential is discussed in this Chapter. COVID-19 demonstrates the failure of biosafety and security systems and safeguards that should prevent a global pandemic of this emergency. According to researchers, zoonotic diseases will continue to cross the animal-human barrier causing the additional risks for emergency. SARS‐CoV‐2 pandemic spread covered over 800 million cats and dogs kept as pets worldwide, as well as large segment of animal farming industry, that raises concerns of domestic and farmed animals in general and carnivores in particular, becoming an epidemiologically relevant animal source for COVID‐19. SARS‐CoV‐2 control strategies have to pay attention to the close interaction between humans and companion or farmed animals contributes to human infections. The SARS‐CoV‐2 mitigation strategies have to take into the account the existing zoonotic transmission, and should be developed in a One Health framework, implementing molecular and serological surveillance as well as epidemiological assessment of SARS‐CoV‐2 occurrence in domestic and farmed animals alongside humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. El Zowalaty ME, Jarhult JD (2020) From SARS to COVID- 19: a previously unknown SARS- related coronavirus (SARS-CoV-2) of pandemic potential infecting humans—call for a one health approach. One Health 9:100124

    Article  PubMed  PubMed Central  Google Scholar 

  2. Konda M et al (2020) Potential zoonotic origins of SARS-CoV-2 and Insights for preventing future pandemics through one health approach. Cureus 12(6):e8932. https://doi.org/10.7759/cureus.8932

    Article  PubMed  PubMed Central  Google Scholar 

  3. Drosten C et al (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348:1967–1976

    Article  CAS  PubMed  Google Scholar 

  4. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RAM (2012) Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367:1814–1820

    Article  CAS  PubMed  Google Scholar 

  5. Cui J, Li F, Shi ZL (2019) Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 17:181–192

    Article  CAS  PubMed  Google Scholar 

  6. Fan Y, Zhao K, Shi Z-L, Zhou P (2019) Bat coronaviruses in China. Viruses 11:210

    Article  CAS  PubMed Central  Google Scholar 

  7. Guan Y et al (2003) Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302:276–278

    Article  CAS  PubMed  Google Scholar 

  8. Tu C et al (2004) Antibodies to SARS coronavirus in civets. Emerg Infect Dis 10:2244–2248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li W et al (2005) Bats are natural reservoirs of SARS-like coronaviruses. Science 310:676–679

    Article  CAS  PubMed  Google Scholar 

  10. Yang XL et al (2016) Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of severe acute respiratory syndrome coronavirus. J Virol 90:3253–3256

    Article  CAS  PubMed Central  Google Scholar 

  11. Rowe CL et al (1997) Generation of coronavirus spike deletion variants by high-frequency recombination at regions of predicted RNA secondary structure. J Virol 71:6183–6190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chinese SMEC (2004) Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 303:1666–1669

    Article  CAS  Google Scholar 

  13. Wang N et al (2018) Serological evidence of bat SARS-related coronavirus infection in humans. China Virol Sin 33:104–107

    Article  PubMed  Google Scholar 

  14. Hu B et al (2017) Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLOS Pathog 13:e1006698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Song HD et al (2005) Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc Natl Acad Sci USA 102:2430–2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Muller MA et al (2014) MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983–1997. Emerg Infect Dis 20:2093–2095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Huynh J et al (2012) Evidence supporting a zoonotic origin of human coronavirus strain NL63. J Virol 86:12816–12825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tao Y et al (2017) Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history. J Virol 91:e01953-e2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou P et al (2018) Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 556:255–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang L et al (2013) Novel SARS-like betacoronaviruses in bats, China, 2011. Emerg Infect Dis 19:989–991

    Article  PubMed  PubMed Central  Google Scholar 

  21. He B et al (2014) Identification of diverse alphacoronaviruses and genomic characterization of a novel severe acute respiratory syndrome-like coronavirus from bats in China. J Virol 88:7070–7082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Drexler JF et al (2010) Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J Virol 84:11336–11349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou P, Li H, Wang H et al (2012) Bat severe acute respiratory syndrome-like coronavirus ORF3b homologues display different interferon antagonist activities. J Gen Virol 93:275–281

    Article  CAS  PubMed  Google Scholar 

  24. Zeng LP et al (2017) Cross-neutralization of SARS coronavirus-specific antibodies against bat SARS-like coronaviruses. Sci China Life Sci 60:1399–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Raj VS et al (2014) Isolation of MERS coronavirus from a dromedary camel, Qatar, 2014. Emerg Infect Dis 20:1339–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lau SK et al (2013) Genetic characterization of Betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: implications for the origin of the novel Middle East respiratory syndrome coronavirus. J Virol 87:8638–8650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang L et al (2014) MERS-related betacoronavirus in Vespertilio superans bats. China Emerg Infect Dis 20:1260–1262

    Article  PubMed  Google Scholar 

  28. Wang Y et al (2015) Origin and possible genetic recombination of the Middle East respiratory syndrome coronavirus from the first imported case in China: phylogenetics and coalescence analysis. MBio 6:e01280-e1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lau SKP et al (2018) Receptor usage of a novel bat lineage C betacoronavirus reveals evolution of Middle East respiratory syndrome-related coronavirus spike proteins for human dipeptidyl peptidase 4 binding. J Infect Dis 218:197–207

    Article  CAS  PubMed  Google Scholar 

  30. Luo CM et al (2018) Discovery of novel bat coronaviruses in South China that use the same receptor as Middle East respiratory syndrome coronavirus. J Virol 92:e00116-e118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. www.who.int (SARS-CoV2 newsletter)/2020

  32. Anthony SJ et al (2017) Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus. MBio 8:e00373-e417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cohen J (2020) Mining Coronavirus genomes for clues to the outbreak's origin. https://www.sciencemag.org/news/2020/01/mining-coronavirus-genomes-clues-outbreak-s-origins

  34. Zhou P, Yang XL, Wang XG et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ji W, Wang W, Zhao X et al (2020) Cross-species transmission of the newly identified coronavirus 2019-nCoV. J Med Virol 92:433–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu Z, Xiao X, Wei X et al (2020) Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2. J Med Virol 92:595–601

    Article  CAS  PubMed  Google Scholar 

  37. Luan J., Jin X., Lu Y (2020) SARS-CoV-2 spike protein favors ACE2 from Bovidae and Cricetidae. J Med Virol 92(9):1649–1656. https://doi.org/10.1002/jmv.25817. Epub 2020 Apr 10

  38. Wan Y. Shang J. Graham R et al. (2020) Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS Coronavirus. J Virol 94:0–20

    Google Scholar 

  39. Shi J, Wen Z, Zhong G et al (2020) Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science 368:1016–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu P, Chen W, Chen JP (2019) Viral metagenomics revealed Sendai virus and coronavirus infection of Malayan pangolins (Manis javanica). Viruses 11:979

    Google Scholar 

  41. Zhang T, Wu Q, Zhang Z (2020) Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr Biol 30:1346–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lam TT, Shum MH, Zhu HC et al (2020) Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature 583(7815):282–285. https://doi.org/10.1038/s41586-020-2169-0. Epub 2020 Mar 26

  43. Xiao K, Zhai J, Feng Y et al (2020) Isolation and characterization of 2019-nCoV-like coronavirus from Malayan pangolins. Nature 583(7815):286–289. https://doi.org/10.1038/s41586-020-2313-x. Epub 2020 May 7

  44. Wong MC, Cregeen SJJ, Ajami NJ, Petrosino JF (2020) Evidence of recombination in coronaviruses implicating pangolin origins of nCoV-2019. Biorxiv. https://doi.org/10.1101/2020.02.07.939207

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhou P, Yang XL, Wang XG et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798):270–273. https://doi.org/10.1038/s41586-020-2012-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim YI, Kim SG, Kim SM et al (2020) Infection and rapid transmission of SARS-CoV-2 in ferrets. Cell Host Microbe 27:704–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. SARS-CoV-2 in animals (2020) https://www.avma.org/resorces-tools/animal-health-and-welfare/covid-19/sars-cov-2-animals-including-pets

  48. Foley NM, Springer MS, Teeling EC (2016) Mammal madness: is the mammal tree of life not yet resolved? Philos Trans R Soc Lond B Biol Sci. 371(1699):20150140. https://doi.org/10.1098/rstb.2015.0140. PMID: 27325836; PMCID: PMC4920340

  49. Wendy KJ et al (2020) Potential zoonotic sources of SARS-CoV-2 infections. Transboundary Emergent Dis 00:1–11. https://doi.org/10.1111/tbed.13872

    Article  Google Scholar 

  50. Drexler JF, Corman VM, Drosten C (2014) Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antiviral Res 101:45–56

    Article  CAS  PubMed  Google Scholar 

  51. Anti P, Owusu M, Agbenyega O et al (2015) Human-bat interactions in rural West Africa. Emerg Infect Dis 21(8):1418–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mildenstein T, Tanshi I, Racey PA (2016) Exploitation of Bats for Bushmeat and Medicine. In: Voigt C, Kingston T (eds) Bats in the anthropocene: conservation of bats in a changing world. Springer, Cham, pp 325–375

    Chapter  Google Scholar 

  53. Corman VM, Muth D, Niemeyer D, Drosten C (2018) Hosts and sources of endemic human coronaviruses. Adv Virus Res 100:163–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vijgen L, Keyaerts E, Lemey P et al (2006) Evolutionary history of the closely related group 2 coronaviruses: porcine hemagglutinating encephalomyelitis virus, bovine coronavirus, and human coronavirus OC43. J Virol 80(14):7270–7274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kan B, Wang M, Jing H et al (2005) Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. J Virol 79(18):11892–11900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Graham RL, Baric RS (2010) Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission. J Virol 84(7):3134–3146

    Article  CAS  PubMed  Google Scholar 

  57. Li Q, Guan X, Wu P et al (2020) Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 382(13):1199–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Huang C, Wang Y, Li X et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 395(10223):497–506

    Article  CAS  Google Scholar 

  59. Latinne A, Hu B, Olival KJ et al (2020) Origin and cross-species transmission of bat coronaviruses in China. Nature Comm 11(1):4235

    Article  CAS  Google Scholar 

  60. Sit THC, Brackman CJ, Ip SM et al (2020) Infection of dogs with SARS-CoV-2. Nature. https://doi.org/10.1038/s41586-020-2334-5

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhang Q, Zhang H, Gao J et al (2020) A serological survey of SARS-CoV-2 in cat in Wuhan. Emerg Microbes Infect 9(1):2013–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Patterson EI, Elia G, Grassi A et al (2020) Evidence of exposure to SARS‐CoV‐2 in cats and dogs from households in Italy. bioRxiv. https://doi.org/10.1101/2020.07.21.214346

  63. Barrs VR, Peiris M, Tam KWS et al (2020) SARS‐CoV‐2 in quarantined domestic cats from COVID‐19 households or close contacts, Hong Kong, China. Emerg Infect Dis 26(12). https://wwwnc.cdc.gov/eid/article/26/12/20-2786_article. https://doi.org/10.3201/eid2612.202786

  64. Martina BE, Haagmans BL, Kuiken T et al (2003) Virology: SARS virus infection of cats and ferrets. Nature 425(6961):915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Roberts A, Vogel L, Guarner J et al (2005) Severe acute respiratory syndrome coronavirus infection of golden Syrian hamsters. J Virol 79(1):503–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Freuling CM, Breithaupt A, Müller T et al (2020) Raccoon dogs are susceptible to and efficiently transmit SARS‐CoV2 and may serve as intermediate host. bioRxiv. https://doi.org/10.1101/2020.08.19.256800

  67. Munoz-Fontela C, Dowling WE, Funnell SGP et al (2020) Animal models for COVID-19. Nature. https://doi.org/10.1038/s41586-020-2787-6

    Article  PubMed  PubMed Central  Google Scholar 

  68. Shi J, Wen Z, Zhong G et al (2020) Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science 368(6494):1016–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. ProMED-mail (2020, Jan 8) Undiagnosed pneumonia—China: novel coronavirus identified. Available at: https://promedmail.org/promedpost/?id=20200108.6877694. Accessed 26 Jan 2020

  70. Halfmann PJ, Hatta M, Chiba S et al (2020) Transmission of SARS-CoV-2 in Domestic Cats. N Engl J Med 383(6):592–594. https://doi.org/10.1056/NEJMc2013400

    Article  PubMed  Google Scholar 

  71. Oreshkova N, Molenaar RJ, Vreman S et al (2020) SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Eurosurv 25(23):2001005. https://doi.org/10.2807/1560-7917.ES.2020.25.23.2001005

    Article  Google Scholar 

  72. Oude Munnink BB, Sikkema R, Nieuwenhuijse DF et al (2020) Jumping back and forth: anthropozoonotic and zoonotic transmission of SARS‐CoV‐2 on mink farms. bioRxiv. https://doi.org/10.1101/2020.09.01.277152

  73. Tappe D, Schlottau K, Cadar D et al (2018) Occupation-associated fatal limbic encephalitis caused by variegated squirrel bornavirus 1, Germany, 2013. Emerg Infect Dis 24(6):978–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hoffmann M, Kleine‐Weber H, Pohlmann S (2020) A multibasic cleavage site in the spike protein of SARS‐CoV‐2 is essential for infection of human lung cells. Mol Cell 78(4):779–784 e775

    Google Scholar 

  75. Coutard B, Valle C, de Lamballerie X et al (2020) The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res 176:104742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Andersen KG, Rambaut A, Lipkin WI (2020) The proximal origin of SARS-CoV-2. Nat Med 26(4):450–452

    Article  CAS  PubMed  Google Scholar 

  77. Licitra BN, Millet JK, Regan AD et al (2013) Mutation in spike protein cleavage site and pathogenesis of feline coronavirus. Emerg Infect Dis 19(7):1066–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hu B, Zeng LP, Yang XL (2017) Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog 13(11):e1006698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Latinne A, Hu B, Olival KJ et al (2020) Origin and cross-species transmission of bat coronaviruses in China. Nat Commun 11(1):4235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cheng VC, Chan JF, To KK, Yuen KY (2013) Clinical management and infection control of SARS: lessons learned. Antiviral Res 100(2):407–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Alharbi NK (2017) Vaccines against Middle East respiratory syndrome coronavirus for humans and camels. Rev Med Virol 27(2):e1917

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fr priest Anton P. Gerilovych .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gerilovych, F.p.A.P. et al. (2021). SARS-CoV-2 Zoonotic Potential: Current Knowledge and Hypotheses. In: Legach, F.a.E.I., Sharov, K.S. (eds) SARS-CoV-2 and Coronacrisis. Springer, Singapore. https://doi.org/10.1007/978-981-16-2605-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2605-0_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2604-3

  • Online ISBN: 978-981-16-2605-0

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics