Skip to main content

A Study on the Adaptability of Deep Learning-Based Polar-Coded NOMA in Ultra-Reliable Low-Latency Communications

  • Conference paper
  • First Online:
Applied Information Processing Systems

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1354))

Abstract

According to ITU-R, 5G wireless communication’s primary goal is achieving too high data rates in the broadcast region. Polar coding has emerged as a pivotal channel coding technique for 5G to accomplish the previously mentioned goals. Subsequently, the Polar- Coded Non-Orthogonal Multiple Access (PC-NOMA) is observed as a favorable channel accessing technique for sporadic traffic of low data rate devices in a 5G Internet of Things (IoT) environment. Deep Learning algorithms are getting revolutionized in data analysis, Prediction, and decision-making by employing neural network hierarchy. When these Deep Learning algorithms get incorporated in channel estimation or resource allocation of Polar-coded NOMA, they appear to be a promising and robust solution for an uncertain channel. Meanwhile, ultra-reliable low-latency communication, one among the vital 5G use cases, has tremendous potential applications in the Internet of things generation. Consequently, the challenges of integrating deep learning techniques with PC-NOMA for URLLC use cases are reviewed, and the adaptability of Deep Learning algorithms for channel estimation and resource allocation of NOMA are surveyed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656. Math. Rev. (MathSciNet) MR10, 133e (1948)

    Google Scholar 

  2. Arikan, E.: Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans. Inf. Theory 55(7), 3051–3073 (2009)

    Google Scholar 

  3. Bioglio, V., Condo, C., Land, I.: Design of polar codes in 5g new radio. arXiv preprint (2018). arXiv:1804.04389

  4. Babar, Z., et al.: Polar codes and their quantum-domain counterparts. In: IEEE Commun. Surv. Tutor. 22(1), 123–155. Firstquarter (2020). https://doi.org/10.1109/COMST.2019.2937923

  5. Dai, J., Niu, K., Si, Z., Dong, C., Lin, J.: Polar-coded non-orthogonal multiple access. IEEE Trans. Signal Process. 66(5), 1374–1389 (2018). https://doi.org/10.1109/TSP.2017.2786273

  6. Gui, G., Huang, H., Song, Y., Sari, H.: Deep learning for an effective nonorthogonal multiple access scheme. IEEE Trans. Veh. Technol. 67(9), 8440–8450 (2018). https://doi.org/10.1109/TVT.2018.2848294

  7. Sutton, G.J., et al.: Enabling technologies for ultra-reliable and low latency communications: from PHY and MAC layer perspectives. IEEE Commun. Surv. Tutor. 21(3), 2488–2524. Thirdquarter (2019). https://doi.org/10.1109/COMST.2019.2897800

  8. Zhang, M., Lou, M., Zhou, H., Zhang, Y., Liu, M., Zhong, Z.: Non-orthogonal coded access based uplink grant-free transmission for URLLC. In: IEEE/CIC International Conference on Communications in China (ICCC), Changchun, China, pp. 624–629 (2019). https://doi.org/10.1109/ICCChina.2019.885590

  9. Alamdar-Yazdi, A., Kschischang, F.R.: A simplified successive-cancellation decoder for polar codes. IEEE Commun. Lett. 15(12), 1378–1380 (2011). https://doi.org/10.1109/LCOMM.2011.101811.111480

  10. Tal, I., Vardy, A.: List decoding of polar codes. IEEE Trans. Inf. Theory 61(5), 2213–2226 (2015)

    Google Scholar 

  11. Afisiadis, O., Balatsoukas-Stimming, A., Burg, A.: A low-complexity improved successive cancellation decoder for polar codes. In: Asilomar Conference on Signals, Systems and Computers, pp. 2116–2120 (2014)

    Google Scholar 

  12. Condo, C., Ercan, F., Gross, W.J.: Improved successive cancellation flip decoding of polar codes based on error distribution. arXiv preprint (2017). arXiv:1711.11096)

  13. Li, B., Shen, H., Tse, D.: An adaptive successive cancellation list decoder for polar codes with cyclic redundancy check. IEEE Commun. Lett. 16(12), 2044–2047 (2012)

    Google Scholar 

  14. Xu, S., Luo, F.-L.: Machine Learning for Future Wireless Communications, 1st edn. Wiley (2020)

    Google Scholar 

  15. Cammerer, S., Gruber, T., Hoydis, J., ten Brink, S.: Scaling deep learning-based decoding of polar codes via partitioning. In: IEEE Global Communications Conference, Singapore (2017). https://doi.org/10.1109/GLOCOM.2017.8254811

  16. Doan, N., Ali Hashemi, S., Gross, W.J.: Neural successive cancellation decoding of polar codes. In: IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, pp. 1–5 (2018). https://doi.org/10.1109/SPAWC.2018.8445986

  17. Yuan, C., Wu, C., Cheng, D., Yang, Y.: Deep learning in encoding and decoding of polar codes. J. Phys. Conf. Ser. 1060(1), 012021. IOP Publishing (2018)

    Google Scholar 

  18. Liang, F., Shen, C., Wu, F.: An iterative BP-CNN architecture for channel decoding. IEEE J. Sel. Top. Sig. Process. 12(1), 144–159 (2018)

    Google Scholar 

  19. Wen, C., Xiong, J., Gui, L., et al.: A novel decoding scheme for polar code using convolutional neural network. In: 2019 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). IEEE, Jeju, Korea (South), pp. 1–5 (2019)

    Google Scholar 

  20. Gruber, T., Cammerer, S., Hoydis, J., ten Brink, S.: On deep learning-based channel decoding. In: Annual Conference on Information Sciences and Systems (CISS), pp. 1–6 (2017

    Google Scholar 

  21. Nachmani, E., et al.: Learning to decode linear codes using deep learning. In: 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, pp. 341–346 (2016)

    Google Scholar 

  22. Song, X., Zhang, Z., Wang, J., Qin, K.: A graph-neural-network decoder with MLP-based processing cells for polar codes. In: 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, Xi’an, China, pp. 1–6 (2019)

    Google Scholar 

  23. Xu, W., Wu, Z., Ueng, Y.-L., You, X., Zhang, C.: Improved polar decoder based on deep learning. In: IEEE International Workshop on Signal Processing Systems (SiPS), pp. 1–6 (2017)

    Google Scholar 

  24. Lyu, W., Zhang, Z., Jiao, C., Qin, K., Zhang, H.: Performance evaluation of channel decoding with deep neural networks. IEEE International Conference on Communication (ICC), pp. 1–6 (2018)

    Google Scholar 

  25. Liu, X., Wu, S., Wang, Y., et al.: Exploiting error-correction-CRC for polar SCL decoding: a deep learning-based approach. IEEE Trans. Cogn. Commun. Netw. 6, 817–828 (2020). https://doi.org/10.1109/TCCN.2019.2946358

  26. Wang, J., Li, J., Huang, H., Wang, H.: Fine-grained recognition of error correcting codes based on 1-D convolutional neural network. Dig. Sig. Process. 99, 102668 (2020). https://doi.org/10.1016/j.dsp.2020.102668

  27. Gao, J., Niu, K., Dong, C.: Exploiting error-correction-CRC for polar SCL decoding. IEEE Access 8, 27210–27217 (2020)

    Google Scholar 

  28. Lugosch, L., Gross, W.J.: Neural offset min-sum decoding. In: 2017 IEEE International Symposium on Information Theory (ISIT) (2017). https://doi.org/10.1016/j.dsp.2020.102668

  29. Dai, B., Liu, R., Yan, Z.: New min-sum decoders based on deep learning for polar codes. In: IEEE International Workshop on Signal Processing Systems (SiPS), Cape Town, pp. 252–257 (2018). https://doi.org/10.1109/SiPS.2018.8598384

  30. He, B., Wu, S., Deng, Y., Yin, H., Jiao, J., Zhang, Q.: A machine learning based multi-flips successive cancellation decoding scheme of polar codes. In: IEEE 91st Vehicular Technology Conference (VTC2020-Spring) 2020, pp. 1–5 (2020)

    Google Scholar 

  31. Fang, J., Bi, M., Xiao, S., et al.: Neural network decoder of polar codes with tanh-based modified LLR over FSO turbulence channel. Opt. Express 28, 1679 (2020). https://doi.org/10.1364/OE.384572

  32. Fang, J., et al.: Neural successive cancellation polar decoder with Tanh-based modified LLR over FSO turbulence channel. IEEE Photon. J. 12(6), 1–10. Art no. 7906110 (2020). https://doi.org/10.1109/JPHOT.2020.3030618

  33. Xu, W., You, X., Zhang, C., Be’ery, Y.: Polar decoding on sparse graphs with deep learning. In: 52nd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, pp. 599–603 (2018). https://doi.org/10.1109/ACSSC.2018.8645372

  34. Narengerile, Thompson, J.: Deep learning for signal detection in non-orthogonal multiple access wireless systems. UK/China Emerging Technologies (UCET), Glasgow, United Kingdom, pp. 1–4 (2019). https://doi.org/10.1109/UCET.2019.8881888

  35. Kang, J.-M., Kim, I.-M., Chun, C.-J.: Deep learning-based MIMO-NOMA with imperfect SIC decoding. IEEE Syst. J. 14(3), 3414–3417 (2020). https://doi.org/10.1109/JSYST.2019.2937463

  36. Boloursaz Mashhadi, M., Gündüz, D.: Deep learning for massive MIMO channel state acquisition and feedback. J. Indian Inst. Sci. 100(2), 369–382 (2020). https://doi.org/10.1007/s41745-020-00169-2

  37. Cui, J., Ding, Z., Fan, P.: The application of machine learning in mmWave-NOMA systems. In: 2018 IEEE 87th Vehicular Technology Conference (VTC Spring). IEEE, Porto, pp. 1–6 (2018)

    Google Scholar 

  38. Cui, J., Ding, Z., Fan, P., Al-Dhahir, N.: Unsupervised machine learning-based user clustering in millimeter-wave-NOMA systems. IEEE Trans. Wirel. Commun. 17(11), 7425–7440 (2018). https://doi.org/10.1109/TWC.2018.2867180

  39. Budhiraja, I., Tyagi, S., Tanwar, S., Kumar, N., Rodrigues, J.J.P.C.: Tactile internet for smart communities in 5G: an insight for NOMA-based solutions. IEEE Trans. Ind. Inform. 15(5), 3104–3112 (2019). https://doi.org/10.1109/TII.2019.2892763

  40. Ahmad Khan Beigi, N., Soleymani, M.R.: Ultra-reliable energy-efficient cooperative scheme in asynchronous NOMA with correlated sources. IEEE Internet Things J. 6(5), 7849–7863 (2019). https://doi.org/10.1109/JIOT.2019.2911434

  41. Wang, Z., Lv, T., Lin, Z., Zeng, J., Mathiopoulos, P.T.: Outage performance of URLLC NOMA systems with wireless power transfer. IEEE Wirel. Commun. Lett. 9(3), 380–384 (2020). https://doi.org/10.1109/LWC.2019.2956536

  42. Chen, X., Cheng, J., Zhang, Z., Wu, L., Dang, J., Wang, J.: Data-rate driven transmission strategies for deep learning-based communication systems. IEEE Trans. Commun. 68(4), 2129–2142 (2020). https://doi.org/10.1109/TCOMM.2020.2968314

  43. Shlezinger, N., Farsad, N., Eldar, Y.C., Goldsmith, A.J.: ViterbiNet: a deep learning based Viterbi algorithm for symbol detection. IEEE Trans. Wirel. Commun. 19(5), 3319–3331 (2020). https://doi.org/10.1109/TWC.2020.2972352

  44. Besser, K.-L., Lin, P.-H., Janda, C.R., Jorswieck, E.A.: Wiretap code design by neural network autoencoders. IEEE Trans. Inf. Forensic Secur. 15, 3374–3386 (2020). https://doi.org/10.1109/TIFS.2019.2945619

  45. Doğan, S., Tusha, A., Arslan, H.: NOMA with index modulation for uplink URLLC through grant-free access. IEEE J. Sel. Top. Sig. Process. 13(6), 1249–1257 (2019). https://doi.org/10.1109/JSTSP.2019.2913981

  46. Shafin, R., Liu, L., Chandrasekhar, V., Chen, H., Reed, J., Zhang, J.C.: Artificial intelligence-enabled cellular networks: a critical path to beyond-5G and 6G. IEEE Wirel. Commun. 27(2), 212–217 (2020). https://doi.org/10.1109/MWC.001.1900323

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iswarya, N., Venkateswari, R., Madhusudanan, N. (2022). A Study on the Adaptability of Deep Learning-Based Polar-Coded NOMA in Ultra-Reliable Low-Latency Communications. In: Iyer, B., Ghosh, D., Balas, V.E. (eds) Applied Information Processing Systems . Advances in Intelligent Systems and Computing, vol 1354. Springer, Singapore. https://doi.org/10.1007/978-981-16-2008-9_4

Download citation

Publish with us

Policies and ethics