Skip to main content

Automated Gait Classification Using Spatio-Temporal and Statistical Gait Features

  • Conference paper
  • First Online:
Soft Computing: Theories and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1380))

Abstract

This work presents the evaluation of gait spatio-temporal and statistical parameters for automatic classification of human gait. A bundle of clinically relevant walk features is obtained from a cohort of healthy controls as well as neuro-impaired subjects and is normalized using dimensionless normalization to account for physiological variation like height, weight, etc. For feature selection and optimization, significant differences between the derived features from both groups are computed. A machine learning strategy is employed to train and classify these data into healthy and pathological group. The classifier reported a best classification accuracy of around 96% with both dimensional and dimensionless feature sets, with absolute minimum accuracy of just over 90%. The present work demonstrates the effectiveness of spatio-temporal and derived statistical features for gait classification. Extraction of such features is a relatively low-cost and less burdensome process in comparison with traditional approaches involving raw kinetic or kinematic parameters such as ground reaction force and bio-signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ferber, R., et al.: Gait biomechanics in the era of data science. J. Biomech. 49(16), 3759–3761 (2016)

    Article  MathSciNet  Google Scholar 

  2. Qin, L.-y., Ma, H., Liao, W.-H.: Insole plantar pressure systems in the gait analysis of post-stroke rehabilitation. In: 2015 IEEE International Conference on Information and Automation. IEEE (2015)

    Google Scholar 

  3. Tahir, A.M., et al.: A systematic approach to the design and characterization of a smart insole for detecting vertical ground reaction force (vGRF) in gait analysis. Sensors 20(4), 957 (2020)

    Article  Google Scholar 

  4. Liu, T., Inoue, Y., Shibata, K.: A wearable ground reaction force sensor system and its application to the measurement of extrinsic gait variability. Sensors 10(11), 10240–10255 (2010)

    Article  Google Scholar 

  5. Caldas, R., et al.: A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms. Gait Posture 57, 204–210 (2017)

    Article  Google Scholar 

  6. Muro-De-La-Herran, A., Garcia-Zapirain, B., Mendez-Zorrilla, A.: Gait analysis methods: an overview of wearable and non-wearable systems, highlighting clinical applications. Sensors 14(2), 3362–3394 (2014)

    Article  Google Scholar 

  7. Tao, W., et al.: Gait analysis using wearable sensors. Sensors 12(2), 2255–2283 (2012)

    Article  Google Scholar 

  8. Singh, J., Singh, P., Malik, V.: Effect of intrinsic parameters on dynamics of STN model in parkinson disease: a sensitivity-based study. In: Soft Computing: Theories and Applications, pp. 417–427. Springer, Berlin

    Google Scholar 

  9. Hsu, Y.-L., et al.: Gait and balance analysis for patients with Alzheimer’s disease using an inertial-sensor-based wearable instrument. IEEE J. Biomed. Health Inf. 18(6), 1822–1830 (2014)

    Article  Google Scholar 

  10. Marquis, S., et al.: Independent predictors of cognitive decline in healthy elderly persons. Arch. Neurol. 59(4), 601–606 (2002)

    Article  Google Scholar 

  11. Lakany, H.: Extracting a diagnostic gait signature. Pattern Recogn. 41(5), 1627–1637 (2008)

    Article  Google Scholar 

  12. Thanasoontornrerk, R., et al.: Tree induction for diagnosis on movement disorders using gait data. In: 2013 5th International Conference on Knowledge and smart technology (KST). IEEE (2013)

    Google Scholar 

  13. Begg, R.K., Palaniswami, M., Owen, B.: Support vector machines for automated gait classification. IEEE Trans. Biomed. Eng. 52(5), 828–838 (2005)

    Article  Google Scholar 

  14. Williams, G., et al.: Classification of gait disorders following traumatic brain injury. J. Head Trauma Rehabil. 30(2), E13–E23 (2015)

    Article  Google Scholar 

  15. Mannini, A., et al.: A machine learning framework for gait classification using inertial sensors: application to elderly, post-stroke and Huntington’s disease patients. Sensors 16(1), 134 (2016)

    Article  Google Scholar 

  16. Begum, S.V., Rani, M.P.: Recognition of neurodegenerative diseases with gait patterns using double feature extraction methods. In: 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS). IEEE (2020)

    Google Scholar 

  17. Joyseeree, R., Abou Sabha, R., Müller, H.: Applying machine learning to gait analysis data for disease identification. Stud. Health Technol. Inf. 210, 850–854 (2015)

    Google Scholar 

  18. Tahir, N.M., Manap, H.H.: Parkinson disease gait classification based on machine learning approach. J. Appl. Sci. (Faisalabad) 12(2), 180–185 (2012)

    Google Scholar 

  19. Das, R., Hooda, N., Kumar, N.: A Novel Approach for real-time gait events detection using developed wireless foot sensor module. IEEE Sens. Lett. 3(6), 1–4 (2019)

    Article  Google Scholar 

  20. Hooda, N., Das, R., Kumar, N.: Fusion of EEG and EMG signals for classification of unilateral foot movements. Biomed. Signal Process. Control 60, 101990 (2020)

    Article  Google Scholar 

  21. Teufl, W., et al.: Towards inertial sensor based mobile gait analysis: Event-detection and spatio-temporal parameters. Sensors 19(1), 38 (2019)

    Article  Google Scholar 

  22. Iosa, M., et al., The golden ratio of gait harmony: repetitive proportions of repetitive gait phases. BioMed Res. Int. 2013 (2013)

    Google Scholar 

  23. Błażkiewicz, M., Wiszomirska, I., Wit, A.: Comparison of four methods of calculating the symmetry of spatial-temporal parameters of gait. Acta Bioeng. Biomech. 16(1) (2014)

    Google Scholar 

  24. Goldberger, A.L., et al.: Fractal dynamics in physiology: alterations with disease and aging. Proc. Natl. Acad. Sci. 99(suppl 1), 2466–2472 (2002)

    Article  MathSciNet  Google Scholar 

  25. Hof, A.L.: Scaling gait data to body size. Gait Posture 3(4), 222–223 (1996)

    Article  Google Scholar 

  26. Kamruzzaman, J., Begg, R.K.: Support vector machines and other pattern recognition approaches to the diagnosis of cerebral palsy gait. IEEE Trans. Biomed. Eng. 53(12), 2479–2490 (2006)

    Article  Google Scholar 

  27. Wahid, F., et al.: Classification of Parkinson’s disease gait using spatial-temporal gait features. IEEE J. Biomed. Health Inf. 19(6), 1794–1802 (2015)

    Article  Google Scholar 

  28. Beauchet, O., et al.: Guidelines for assessment of gait and reference values for spatiotemporal gait parameters in older adults: the biomathics and Canadian gait consortiums initiative. Front. Hum. Neurosci. 11, 353 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, R., Khera, P., Saxena, S., Kumar, N. (2022). Automated Gait Classification Using Spatio-Temporal and Statistical Gait Features. In: Sharma, T.K., Ahn, C.W., Verma, O.P., Panigrahi, B.K. (eds) Soft Computing: Theories and Applications. Advances in Intelligent Systems and Computing, vol 1380. Springer, Singapore. https://doi.org/10.1007/978-981-16-1740-9_40

Download citation

Publish with us

Policies and ethics