Skip to main content

On the Local Convergence of a Sixth-Order Iterative Scheme in Banach Spaces

  • Conference paper
  • First Online:
New Trends in Applied Analysis and Computational Mathematics

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1356))

Abstract

Applying the Lipschitz continuity of the first-order Fréchet derivative, we describe the local convergence of a sixth-order nonlinear system solver in Banach spaces. This study eliminates the standard practice of Taylor expansion in local analysis and enhances the algorithm applicability through the use of a set of conditions on the first-order derivative. Also, our analysis offers the radii of convergence balls and computable error distances together with the unique result. Various numerical experiments are conducted to demonstrate that our technique is beneficial when prior studies fail to solve problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. I.K. Argyros, Á.A. Magreñán, A study on the local convergence and the dynamics of Chebyshev-Halley-type methods free from second derivative. Numer. Algorithm 71(1), 1–23 (2015)

    Article  MathSciNet  Google Scholar 

  2. I.K. Argyros, Convergence and Application of Newton-type Iterations (Springer, Berlin, 2008)

    MATH  Google Scholar 

  3. I.K. Argyros, Y.J. Cho, S. Hilout, Numerical Methods for Equations and its Applications (Taylor & Francis, CRC Press, New York, 2012)

    Book  Google Scholar 

  4. I.K. Argyros, S. Hilout, Computational Methods in Nonlinear Analysis (World Scientific Publishing House, New Jersey, 2013)

    Book  Google Scholar 

  5. M.S. Petković, B. Neta, L. Petković, D. Dz̃unić, Multipoint Methods for Solving Nonlinear Equations (Elsevier, 2013)

    Google Scholar 

  6. F.A. Potra, V. Ptak, Nondiscrete Induction and Iterative Processes. Research Notes in Mathematics (Pitman Publ, Boston, 1984), p. 103

    Google Scholar 

  7. A. Cordero, J.L. Hueso, E. Martínez, J.R. Toregrossa, Increasing the convergence order of an iterative method for nonlinear systems. Appl. Math. Lett. 25, 2369–2374 (2012)

    Article  MathSciNet  Google Scholar 

  8. A. Cordero, E. Martínez, J.R. Toregrossa, Iterative methods of order four and five for systems of nonlinear equations. J. Comput. Appl. Math. 231, 541–551 (2012)

    Article  MathSciNet  Google Scholar 

  9. M.V. Kanwar, V.K. Kukreja, S. Singh, On some third-order iterative methods for solving nonlinear equations. Appl. Math. Comput. 171(1), 272–280 (2005)

    MathSciNet  MATH  Google Scholar 

  10. J. Kou, Y. Li, X. Wang, A composite fourth-order iterative method for solving non-linear equations. Appl. Math. Comput. 184, 71–475 (2007)

    MathSciNet  Google Scholar 

  11. A.Y. Özban, Some new variants of Newton’s method. Appl. Math. Lett. 17(6), 677–682 (2004)

    Article  MathSciNet  Google Scholar 

  12. L.B. Rall, Computational Solution of Nonlinear Operator Equations (Robert E, Krieger, New York, 1979)

    Google Scholar 

  13. H. Ren, Q. Wu, W. Bi, New variants of Jarratt method with sixth-order convergence. Numer. Algorithm 52(4), 585–603 (2009)

    Article  MathSciNet  Google Scholar 

  14. J.F. Traub, Iterative Methods for Solution of Equations (Prentice-Hall, Englewood Cliffs, 1964)

    MATH  Google Scholar 

  15. S. Weerakoon, T.G.I. Fernando, A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13(8), 87–93 (2000)

    Article  MathSciNet  Google Scholar 

  16. H.P.S. Nishani, S. Weerakoon, T.G.I. Fernando, M. Liyanag, Weerakoon-Fernando Method with accelerated third-order convergence for systems of nonlinear equations. Int. J. Math. Model. Numer. Optim. 8(3), 287–304 (2018)

    Google Scholar 

  17. I.K. Argyros, Y.J. Cho, S. George, Local convergence for some third order iterative methods under weak conditions. J. Korean Math. Soc. 53(4), 781–793 (2016)

    Article  MathSciNet  Google Scholar 

  18. I.K. Argyros, S. George, Local convergence of deformed Halley method in Banach space under Hölder continuity conditions. J. Nonlinear Sci. Appl. 8, 246–254 (2015)

    Article  MathSciNet  Google Scholar 

  19. I.K. Argyros, S. George, Á.A. Magreñán, Local convergence for multi-point-parametric Chebyshev-Halley-type methods of higher convergence order. J. Comput. Appl. Math. 282, 215–224 (2015)

    Article  MathSciNet  Google Scholar 

  20. I.K. Argyros, S. George, Local convergence of modified Halley-like methods with less computation of inversion. NOVI SAD J. Math. 45, 47–58 (2015)

    Article  MathSciNet  Google Scholar 

  21. D. Sharma, S.K. Parhi, On the local convergence of a third-order iterative scheme in Banach spaces. Rendiconti del Circolo Matematico di Palermo, II. Series (2020). https://doi.org/10.1007/s12215-020-00500-x

  22. I.K. Argyros, D. González, Local convergence for an improved Jarratt-type method in Banach space. Int. J. Interact. Multimed. Artif. Intell. 3(Special Issue on Teaching Mathematics Using New and Classic Tools), 20–25 (2015)

    Google Scholar 

  23. S. Singh, D.K. Gupta, R.P. Badoni, E. Martínez, J.L. Hueso, Local convergence of a parameter based iteration with Hölder continuous derivative in Banach spaces. Calcolo 54(2), 527–539 (2017)

    Article  MathSciNet  Google Scholar 

  24. A. Cordero, J.A. Ezquerro, M.A. Hernandez-Veron, On the local convergence of a fifth-order iterative method in Banach spaces. J. Math. 46, 53–62 (2014)

    Google Scholar 

  25. E. Martínez, S. Singh, J.L. Hueso, D.K. Gupta, Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces. Appl. Math. Comput. 281, 252–265 (2016)

    MathSciNet  MATH  Google Scholar 

  26. I.K. Argyros, S. Hilout, On the local convergence of fast two-step Newton-like methods for solving nonlinear equations. J. Comput. Appl. Math. 245, 1–9 (2013)

    Article  MathSciNet  Google Scholar 

  27. I.K. Argyros, S.K. Khattri, Local convergence for a family of third order methods in Banach spaces. Appl. Math. Comput. 251, 396–403 (2015)

    MathSciNet  Google Scholar 

  28. S.K. Parhi, D.K. Gupta, Semilocal convergence of a Stirling-like method in Banach spaces. Int. J. Comput. Methods 7(2), 215–228 (2010)

    Article  MathSciNet  Google Scholar 

  29. I.K. Argyros, Y.J. Cho, S.K. Khattri, On a new semilocal convergence analysis for the Jarratt method. J. Inequal. Appl., 194, 16pp. (2013)

    Google Scholar 

  30. I.K. Argyros, Y.J. Cho, H.M. Ren, Convergence of Halley’s method for operators with the bounded second derivative in Banach spaces. J. Inequal. Appl. 260, 12pp. (2013)

    Google Scholar 

Download references

Acknowledgements

This research is financially supported by the University Grants Commission of India (Ref. No.: 988/(CSIR-UGC NET JUNE 2017); ID: NOV2017-402662).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjaya Kumar Parhi .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they do not have conflict of interests.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parhi, S.K., Sharma, D. (2021). On the Local Convergence of a Sixth-Order Iterative Scheme in Banach Spaces. In: Paikray, S.K., Dutta, H., Mordeson, J.N. (eds) New Trends in Applied Analysis and Computational Mathematics. Advances in Intelligent Systems and Computing, vol 1356. Springer, Singapore. https://doi.org/10.1007/978-981-16-1402-6_7

Download citation

Publish with us

Policies and ethics